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Abstract: Introduction: This narrative review addresses the clinical challenges in stress-related disorders
such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at
the cellular, cerebral, and systemic levels.

Objective: We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade
neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT)
receptors.

Methods:  This  comprehensive  review of  the  literature  employs  systematic,  narrative,  and scoping review
methodologies, combined with systemic approaches to general pathology. It synthesizes current research on
shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent
mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review
also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflam-
matory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depres-
sion and neuroinflammation.

Results: The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory
responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators
in influencing both pathological and physiological processes in nervous tissue.

Conclusion: The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflamma-
tory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for
maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-in-
flammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including de-
pression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive un-
derstanding of the multifaceted nature of the condition.

Keywords: G-protein-coupled receptors, serotonin 5-HT, neuroimmunoinflammation, pro-inflammatory cytokines, chronic stress, major de-
pressive disorder, neuropsychiatric pathology, neuroimmunoinflammatory framework, NIIS model.

1. INTRODUCTION

1.1. Stress-related Disorders and Inflammation

Stress-related disorders comprise a category of psychiatric con-
ditions, including posttraumatic stress disorder, acute stress reac-
tion,  adjustment  disorder,  and  depression,  which  manifest  after
stressful or traumatic life events [1].

Major depressive disorder (MDD) is a severe mental disorder
that significantly affects an individual's  quality of life.  Although
the exact etiology remains elusive, more emphasis is placed on the
role of psychological stress in the onset of depression [2]. MDD is
characterized by symptoms such as depressed mood (manifested as
reduced  motivation  or  hopelessness),  anhedonia  (the  decreased
capacity  to  derive pleasure  from activities  such as  food, sex, and

*Address correspondence to this author at the Laboratory of Inflammation Immunolo-
gy, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of
Science, 620049 Ekaterinburg, Russia; and Russian-Chinese Education and Research
Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Rus-
sia; E-mail: gusev36@mail.ru

social interaction), energy, irritability, difficulties in concentration,
disturbances of sleep and appetite, cognitive dysfunction, and suici-
dality [3].

Stress, which is inherently multifaceted, involves adaptive re-
sponses at the cellular, tissue, and organismic levels, the latter in-
cluding psychoemotional aspects. In pathological states, these re-
sponses often show maladaptive traits, contributing to the develop-
ment of a variety of diseases. This condition, which has been vari-
ably termed 'distress' or 'pathological stress' by researchers, essen-
tially amalgamates adaptive and maladaptive functional systems. In
particular, as pathological conditions evolve, there is a consistent
increase in the severity of this maladaptive stress or distress. In par-
ticular, chronic psychological stress, also known as psychoemotion-
al or mental stress [4-6], can induce a pro-inflammatory state in spe-
cific regions of the brain and the systemic environment. This condi-
tion is associated with hypothalamic-pituitary-adrenal axis dysfunc-
tions and increased sympathetic nervous system activity [7]. Fur-
thermore, stress plays a role in a variety of cardiovascular diseases,
including  hypertension,  myocardial  ischemia,  and  accelerated
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atherosclerosis [8], as well as in gastrointestinal dysfunction [9], ir-
regularities of the immune system [10] and general allostatic load
[11]. These physiological changes contribute to a pathogenetic cy-
cle that implicates both the central nervous system (CNS) and pe-
ripheral  tissues,  thereby  sustaining  Major  Depressive  Disorder
(MDD)  and  other  stress-related  diseases.  Simultaneously,  MDD
and chronic stress are risk factors for the progression of neurode-
generative  diseases,  particularly  those  of  a  vascular  nature  [12].
The impact  of  stress  on these health outcomes is  especially pro-
nounced in older populations [13].

To differentiate between pathological stress leading to disease
and  adaptive  stress,  some  authors  use  the  term  “distress”  to  de-
scribe the former [14-16]. In subsequent discussions, we will refer
to pathological stress as mental distress, distinguishing it, when ne-
cessary, from physiological stress and differentiating it both from
pro-inflammatory cellular and tissue stress.

The association between MDD and neuroinflammation is now
well-established [17]. Importantly, pro-inflammatory mechanisms,
which extend beyond the traditional understanding of inflammation
as a singular process, evidently contribute to both the maintenance
of  nervous  tissue  homeostasis  and  the  borderline  physiological
states that are precursors to neuropathologies and certain stress-re-
lated somatic conditions [18]. This requires nuanced differentiation
between various forms of neuroinflammation and the broader con-
cepts of pro-inflammatory tissue and cellular stress, as well as the
identification of qualitative transitions between these pro-inflamma-
tory states.

In MDD and other stress-related pathologies, there is a disrup-
tion in the relationship between the hypothalamic-pituitary system,
the limbic system, and the neocortex [19, 20]. At the molecular lev-
el, this relationship is mediated by various neurotransmitters, in-
cluding serotonergic pathways. These pathways, although signifi-
cant in their own right, also modulate other neurotransmitters in-
volved in the pathogenesis of MDD [21, 22]. Furthermore, the asso-
ciation  between  serotonergic  mechanisms  and  inflammation  has
been well documented [23, 24].

The evolving understanding of inflammation, now perceived as
a generalized pathological process [25, 26], requires a systematic
exploration of the interrelations between serotonin (5-hydroxytryp-
tamine, 5-HT) signaling, other neurotransmitters, and cellular pro-
inflammatory stress in both normative and pathological states.

This review seeks to elucidate the molecular mechanisms link-
ing chronic psychological stress with low-grade neuroinflammation
in key brain regions. Its primary objectives are outlined as follows:

Exploration  of  Cellular  and Tissue  Stress:  This  entails  a
comprehensive  examination  of  cellular  and  tissue  stress
within  the  framework  of  general  pathology.  It  involves
identifying  connections  between  these  stress  types  and
both canonical and non-classical forms of inflammation, as
well as other general pathological processes.
 
Impact  on  the  Central  Nervous  System  and  Depression:
The review investigates how cellular and tissue stress af-
fects the central nervous system's physiological state, psy-
choemotional  stress,  and  depression.  It  encompasses  an
analysis of oxidative stress mechanisms, the significance
of GPCR signaling pathways, other types of receptors, and
additional  pro-inflammatory  mechanisms.  A  concise  re-
view of current theories and concepts regarding the patho-
genesis of depression is also included.

 
GPCRs and Pro-Inflammatory Functions: An in-depth ex-
ploration  is  provided  on  the  pro-inflammatory  roles  of
GPCRs,  with  a  particular  focus  on  5-HT  receptors  and
their significance in neuropsychiatric disorders. The major
findings from this analysis are summarized in Tables S1
and S2.
 
Principal Characteristics of the Neuroimmunoinflammato-
ry  Concept  of  Stress  and Depression  (NIIS Model):  The
'Conclusion' section of the manuscript presents a detailed
characterization of the Neuroimmunoinflammatory Stress
and Depression Model (NIIS Model), encompassing its fun-
damental aspects and implications.

1.2. Methodological Approaches and Limitations of the Review

This review is conceptual and includes a comprehensive litera-
ture  review that  combines  systematic,  narrative,  and  scoping  re-
view  methodologies,  as  well  as  systemic  approaches  to  general
pathology. Notably, this work does not utilize a meta-analytical ap-
proach based on the Cochrane criteria, as it does not primarily fo-
cus  on  specific  clinical  or  pharmacological  problems.  However,
most of the systematic reviews we cited did employ this methodolo-
gy.

In conducting this review, we evaluated a total of 1856 articles,
comprising 1003 review articles and 853 original research papers.
Out of these, 753 articles were selected, with a predominance of re-
views. 527 articles were included in the main list, while the remain-
ing 226 references are provided in Appendices S2 and S3. It is note-
worthy that a significant portion of the original research articles se-
lected were dedicated to experimental studies.

This blend of methodologies and the range of sources reviewed
provide a broad and diverse perspective on the subject. However,
the potential limitations of this approach include the absence of me-
ta-analysis and the possibility of selection bias, despite our compre-
hensive and systematic approach in selecting articles.

1.2.1. Principles of Inclusion and Exclusion

Recent Reviews: Review publications from the last five years
were preferred, especially those with high citation frequency, re-
flecting widely recognized concepts about neurotransmitter recep-
tor signaling pathways and their role in the pathogenesis of depres-
sion. We aimed to exclude redundant publications or those detail-
ing specific mechanisms that, in our assessment, did not contribute
significantly to understanding the broader patterns of the issue.

General Pathology Theory: For topics such as the general theo-
ry of typical pathological processes, classification of inflammatory
processes, and basic mechanisms of cellular and tissue stress, we
primarily referred to our own publications. These reflect a systemat-
ic  and  detailed  perspective  on  general  pathology,  and  thus  may
more prominently represent the authors' subjective viewpoints.

1.2.2. Operational Limitations

Despite a systematic approach to literature selection, selec-
tion  bias  is  a  potential  limitation.  Relevant  studies  may
have been overlooked inadvertently due to specific search
criteria or unavailability in the databases accessed.
 
The dynamic nature of research in neuroimmunoinflamma-
tion and psychoneuroendocrinology suggests that new find-
ings might emerge shortly after this review's publication,
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potentially altering the current understanding of the interac-
tion between G proteins, serotonin, and chronic stress.
 
Publications that were not accessible in their entirety were
not considered, possibly omitting some relevant scientific
information.
 
The  review's  primary  focus  on  English-language  studies
could limit its comprehensiveness, as significant research
published in other languages could have been overlooked,
introducing a potential bias.
 
Finally, while striving for objectivity, the nature of concep-
tual descriptive reviews inherently poses a risk of subjec-
tive bias in data presentation, analysis, and interpretation.

2.  CELLULAR  AND  TISSUE  STRESS:  ASSOCIATION
WITH INFLAMMATION

Cellular pro-inflammatory stress (CS) is defined as a “complex
of interrelated universal and specific (to particular cell populations)
cellular processes in response to the action of factors causing real
or potential damage” [26]. CS encompasses a variety of intercon-
nected  standard  processes,  regardless  of  cell  type,  including  (1)
oxidative  stress;  (2)  DNA  damage  response;  (3)  mitochondrial
stress,  including  mitochondrial  unfolded  protein  response
(UPRmt); (4) endoplasmic reticulum stress (ER), incorporating cal-
cium-dependent mechanisms and UPRER; (5) response of induci-
ble heat shock proteins (HSP), including their role in UPR; (6) mod-
ulation of autophagy processes during cell growth, or intensifica-
tion for degradation of altered organelles and macromolecules; (7)
formation of inflammasomes; (8) synthesis of stress-related noncod-
ing RNAs; (9) formation of stress granules; (10) assembly of an in-
tracellular signaling network for cellular stress; and (11) develop-
ment of pro-inflammatory receptor and secretory cell phenotypes.
The primary outcomes of cellular stress include (1) restoration of
cellular physiological equilibrium; (2) apoptosis; (3) various forms
of programmed necrosis; (4) transdifferentiation; (5) malignancy;
(6) cellular aging; and (7) chronicity of CS with gradual accumula-
tion of morphofunctional disorders [25, 26].

The  induction  of  a  pro-inflammatory  phenotype  in  various
cells results in tissue stress, characterized by the formation of an in-
ducible cytokine network. Each individual CS process, as well as
its integrative mechanisms, involves negative feedback loops that
serve to spatially and temporally constrain tissue stress and prevent
physiological imbalances associated with CS. Such mechanisms in-
clude the induction of antioxidants, antiapoptotic factors, proteaso-
mal and autophagic degradation of damaged organelles and stress
proteins, and the reversibility of stress-induced post-translational
modifications and epigenetic changes, controlled by stress noncod-
ing  RNAs  [25,  26].  In  the  context  of  tissue  stress,  these  mech-
anisms involve the production of specialized pro-resolvent media-
tors and other anti-inflammatory factors by activated cells [27-29].
The  balanced  interplay  between  activation  and  resolution  mech-
anisms  dictates  the  adaptive  capabilities  of  cellular  and  tissue
stress, while any imbalance therein culminates in persistent patholo-
gy, exemplifying the transformation of “medicine (inflammation)
into poison”.

Indeed, it is imperative to recognize that many molecular mech-
anisms  that  constitute  cellular  stress  (CS)  are  evolutionarily
conserved,  predating  the  development  of  complex  inflammation
programs at the tissue and systemic levels. For example, heat shock
proteins (HSPs) with homologous functions are ubiquitously pre-

sent in different subcellular compartments (e.g., nucleus, mitochon-
dria, endoplasmic reticulum, cytosol) in both prokaryotic and eu-
karyotic cells [30]. Primitive forms of immune memory and non-
classical inflammation, such as phagocyte accumulation at injury
sites, are evident in diverse invertebrate species [31-33]. Further-
more,  immunity  in  these  organisms  not  only  aims  to  neutralize
harmful factors but also to maintain tissue homeostasis and regener-
ation  [34].  However,  canonical  inflammation  appears  to  have
evolved  exclusively  in  vertebrates,  accompanied  by  advances  in
the blood microcirculation system, facilitating directed leukocyte
migration to injury sites and enabling classical adaptive immunity
of the lymphocytic type [35, 36].

Recent advances in molecular biology and pharmacology have
considerably broadened our understanding of CS and inflammation
as general pathological processes [25, 26]. Canonical or classical in-
flammation has traditionally been conceptualized as a primarily lo-
calized tissue response to injury, marked by exudative vascular re-
actions and significant migration of leukocytes to the site of inflam-
mation. In contrast, acute systemic hyperinflammation, a life-criti-
cal condition, is characterized by microcirculatory dysfunctions, cy-
tokine storms, multiorgan failure, and shock states [37, 38]. This
systemic inflammatory response often follows as a sequel or direct
complication of localized classical inflammation, as exemplified in
COVID-19 cases [39].

Certainly,  low-grade chronic inflammation represents  a  non-
classical form of inflammation, intricately linked with metabolic
factors, often termed meta-inflammation [40] - and aging process-
es, known as inflammaging [41, 42]. This form of inflammation pri-
marily  involves  resident  cells  such  as  stromal  macrophages  and
other connective tissue cells, as well as parenchymal cells in a state
of  pro-inflammatory cellular  stress  (CS).  Importantly,  low-grade
chronic inflammation lacks a typical barrier function, which pre-
sents a proclivity to delocalization. Consequent systemic manifesta-
tions include conditions such as morbid obesity [43], metabolic syn-
drome [44, 45], and type 2 diabetes mellitus [46]. Neurodegenera-
tive processes associated with old age can also be considered local
manifestations of this type of inflammation, although pathogeneti-
cally linked to low-grade systemic inflammation [47-50].

Interestingly,  the transition from local  low-grade chronic  in-
flammation to classical-type inflammation is observable under in-
creasing harmful influences, exemplified in conditions such as non-
alcoholic fatty liver disease and diabetic kidney disease [51]. The
complex etiopathology of atherosclerosis presents another case in
which features of both low-grade and productive inflammation co-
exist, warranting its classification as a special mixed type of inflam-
mation [52].

Recent  insights  extend  the  relevance  of  pro-inflammatory
mechanisms to diseases not traditionally classified as inflammato-
ry, such as cancer [53]. Cellular and tissue stress, in its pro-inflam-
matory forms, is involved in a variety of physiological functions,
encompassing embryogenesis, cell proliferation and differentiation,
immunogenesis, functions of the integumentary tissue barrier, and
skeletal muscle contractility [26, 54-58].

In  metaphorical  terms,  if  cellular  and  tissue  stress  are  com-
pared to an iceberg submerged in water,  canonical  inflammation
would correspond to the visible, above-water segment of this ice-
berg (Fig. 1). The less explored “submerged portion” would house
various non-classical forms of inflammation, as well as stress and
distress of the neuroendocrine system, among other physiological
processes interlinked with CS mechanisms. These hidden dimen-
sions can be crucial in the transition from physiological to patholog-
ical states when they are imbalanced.
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Fig. (1). The integrative role of tissue stress (the “Iceberg” Model) in various pathological and extreme physiological processes. (A higher res-
olution/colour version of this figure is available in the electronic copy of the article).

Hence, an in-depth understanding of the entire 'iceberg', that is,
the totality of mechanisms related to cellular and tissue stress, both
classical and non-classical forms of inflammation, is imperative for
elucidating the intricate landscape of diseases and their pathogene-
sis.

Fig. (1) illustrates the crucial role of tissue stress, represented
by the 'iceberg model', in various pathological and extreme physio-
logical processes. This diagram emphasizes that cellular stress sig-
naling pathways play a significant role beyond canonical inflamma-
tion. In fact, these mechanisms may contribute to the development
of  not  only  low-grade  chronic  inflammation  and  other  forms  of
non-classical  inflammation  but  also  pathologies  traditionally  not
classified as inflammatory diseases, such as cancer, aging, and neu-
ropsychiatric disorders.

Qualitative transitions in the stress states of cellular and tissue
depend  on  multiple  variables.  These  factors  encompass  the  type
and strength of harmful agents, the magnitude, pervasiveness, and
temporality of tension, and the particular milieus in which molecu-
lar pro-inflammatory pathways are involved. Furthermore, the in-
volvement of “specialized” immune cells in these mechanisms is
another  factor  that  affects  the environment of  cellular  and tissue
stress. It is important to note that Fig. (1) intentionally omits the de-
piction of life-threatening systemic hyperinflammation. This is be-
cause  the  extent  of  the  pro-inflammatory  transformation  of  mi-
crovessels  in  this  state  surpasses  that  of  canonical  inflammation
and has a significant impact on multiple organ systems. Therefore,
it requires separate consideration as a state of pathological exigen-
cy.

Considering the comprehensive elucidation of cellular and tis-
sue stress mechanisms and their intersection with various pathologi-
cal and physiological processes, it is imperative to refine our classi-
fication systems. This differentiation would serve to encompass not
only a spectrum of inflammatory responses but also a wider range
of conditions, including those traditionally outside the scope of in-
flammatory diseases. This becomes particularly salient when con-
sidering  the  commonality  of  molecular  and  cellular  pathways  in
states such as psychoemotional stress, which, although not conven-
tionally categorized as inflammatory, exhibit analogous features at
the molecular level (Fig. 2).

This multidimensional framework aims to encapsulate both the
pathological  and  extreme  physiological  processes  that  border
pathology,  thus  providing  a  unified  platform  for  future  research
and therapeutic intervention. Therefore, there is a pressing need not
only to differentiate among types of inflammation but also to delin-
eate the basic mechanisms that underlie pro-inflammatory cellular
and tissue stress as a universal substrate for multiple physiological
and pathological states.

Note that this common platform is applicable to multiple hu-
man  pathologies.  Cellular  stress  serves  as  the  foundational  sys-
temic unit that underpins tissue stress, creating a shared pathogenet-
ic platform that is relevant not only for a wide range of pathologies
but  also  for  various  physiological  conditions.  The  most  notable
manifestations of tissue stress, especially those that involve signifi-
cant involvement of “professional inflammatory cells” from the im-
mune system, are predominantly associated with classical forms of
inflammation and potentially life-threatening systemic hyperinflam-
mation. With a decrease in the intensity of these pro-inflammatory
mechanisms, additional processes such as atherogenesis, low-grade
chronic inflammation, and neoplastic diseases can be included in
the spectrum, even though they are typically not categorized as in-
flammatory  conditions.  Therefore,  these  divergent  pathologies
have similar pro-inflammatory components at the cellular, tissue,
and organismal levels,  allowing their  systemic conceptualization
and the application of typical therapeutic methods for these condi-
tions. Mental health conditions such as depression and other disor-
ders linked to psychoemotional stress can further broaden this con-
ceptual  framework,  providing a  more thorough understanding of
the  usual  pathological  procedures.  This  integration  will  be  dis-
cussed in the concluding section of the article.

3. THE ROLE OF TISSUE STRESS MECHANISMS IN THE
PHYSIOLOGICAL  STATE  OF  THE  CNS,  PSYCHOEMO-
TIONAL STRESS, AND DEPRESSION

The  physiological  thresholds  for  cellular,  tissue,  and  organ
structures, as well as for the organism as a whole, are not precisely
defined. Surpassing these thresholds compromises both the functio-
nal  integrity  and  the  structural  stability  of  these  biological  units
over an extended period. However, a brief genetically programmed
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Fig. (2). Schematic model of cell and tissue stress as a common platform for various human pathologies. (A higher resolution/colour version
of this figure is available in the electronic copy of the article).

escalation in activity is essential for adaptive responses to adverse
changes in both the internal and external environments. These adap-
tive responses were initially conceptualized by Selye as the “gener-
al adaptation syndrome,” a notion that we now largely equate with
stress [59-61].

It is pertinent to note that the adaptive stress phase can evolve
into  maladaptive  stress  during  the  exhaustion  stage.  Although
stress predominantly implicates the neuroendocrine system, it ex-
erts a secondary influence on other bodily systems. In particular,
psychoemotional stress mainly facilitates adaptation to external en-
vironmental changes, both through nonspecific internal organ activ-
ity and through targeted neuromuscular actions [62-63].

Selye also classified inflammation as a form of localized adap-
tation syndrome, which can now be conceptualized as pro-inflam-
matory tissue stress. This expansive definition encompasses multi-
ple forms of inflammation. As current understanding dictates, neu-
roendocrine stress manifests itself as a component of the systemic
inflammatory response in various somatic pathologies, including,
but not limited to, infections and trauma [64, 65].

Furthermore, the chronicity of psychoemotional stress, especial-
ly its transition to distress, can culminate in a variety of psychoso-
matic  illnesses [66-69].  Interestingly,  classical  pro-inflammatory
molecular  pathways are  actively involved in  the pathogenesis  of
such psychosomatic conditions [70, 71]. Thus, a comprehensive un-
derstanding  of  stress  requires  an  integrative  perspective  that  ac-
counts for its multifaceted interactions with inflammation and other
pathological states.

In fact, the concept of stress has evolved, now encompassing
both systemic and localized manifestations [72]. A sufficiently in-
tense stressor can not only elicit localized stress but also trigger sys-
temic responses by activating the hypothalamic-pituitary-adrenal
(HPA) axis. When tissue damage occurs or molecular markers indi-
cating the threat of damage are detected, localized or systemic pro-
inflammatory tissue stress can manifest.

The complexity of psychoemotional stress and pro-inflammato-
ry stress extends beyond their apparent external differences; both

share fundamental  attributes.  That  is,  their  adaptive mechanisms
must be finely calibrated across specific parameters to retain adap-
tive functionality. Failing this balance, these mechanisms transition
from serving adaptive purposes to instigating pathological develop-
ment.

Turning our attention to the nervous system, the physiological
importance of cellular and tissue stress mechanisms in this context,
as well as their relationship with psychoemotional stress, deserves
particular scrutiny. The nervous system serves as a nexus for inter-
preting both internal and external stimuli and responds through co-
ordinated neurochemical and physiological actions. The relation-
ship between pro-inflammatory tissue stress mechanisms in the ner-
vous  system  and  psychoemotional  stress  is  bidirectional;  the
former can precipitate or exacerbate the latter and vice versa. Un-
der  normal  conditions,  these mechanisms function within tightly
regulated limits to maintain homeostasis. However, in pathological
states, dysregulated cell and tissue stress can precipitate a cascade
of neuroinflammatory responses, and neurodegeneration, and con-
tribute to neuropsychiatric disorders.

Therefore,  an integrated understanding of the interaction be-
tween cellular and tissue stress mechanisms in the nervous system
and psychoemotional stress is critical to developing targeted inter-
ventions for both physiological and pathological conditions.

3.1. Features of Cellular Stress in the Brain

The concept of a pro-inflammatory tone delineates the propen-
sity of tissues to manifest pro-inflammatory mechanisms under phy-
siological conditions. Tissues can be stratified into three primary
categories based on their pro-inflammatory tone: (1) those with a
high resting pro-inflammatory tone, such as integumentary tissues
and immunocompetent organs; (2) those that exhibit intermittent,
but significant surges in pro-inflammatory tone, exemplified by liv-
er and skeletal muscle; and (3) those who maintain a relatively sta-
ble, low pro-inflammatory tone, highly sensitive to alterations in
homeostatic parameters and vulnerable to biologically aggressive
pro-inflammatory factors [26]. The central nervous system (CNS)
belongs prominently to the third category.
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The CNS exhibits unique physiological attributes, such as re-
stricted blood flow due to the blood-brain barrier, that contribute to
its specialized immunity privilege. Metabolically (at rest), the brain
is  unparalleled,  consuming  20%  of  body  glucose  and  oxygen,
while  having  approximately  2%  of  body  weight  [73,  74].  This
metabolic demand requires stable blood flow and efficient trans-
port of oxygen and glucose. Furthermore, the high metabolic de-
mand of the brain leads to the intensive production of specialized
proteins  crucial  for  cationic  transmembrane  transport,  nerve  im-
pulse  generation,  and  transmission.  This  metabolic  environment
makes CNS neurons particularly susceptible to oxidative stress and
other damaging agents [75-77].

Another critical vulnerability lies in constant fluctuations in in-
tracellular calcium and other cations in CNS neurons, attributable
to neurotransmitter activity. In particular, cationic excitotoxicity is
often mediated by glutamate ionotropic receptors, highly expressed
in regions of the brain such as the limbic system, which are inti-
mately involved in emotional disorders such as major depressive di-
sorder (MDD), bipolar disorder, anxiety, and post-traumatic stress
disorder [78-81]. Furthermore, neuronal damage and microglial ac-
tivation  can  also  be  derived  from  dysfunctions  in  glutamate,
monoamine, acetylcholine, and purine receptors [82-85], as well as
inhibitory GABA-dependent neuronal deficiencies [86-88].

The unique metabolic and functional characteristics of neurons
in the CNS require intricate regulatory mechanisms to control cellu-
lar stress (CS). Unlike other tissues, the brain is almost exclusively
dependent  on  aerobic  glycolysis,  foregoing  β-oxidation  of  fatty
acids as an energy source [89]. This metabolic specialization miti-
gates the risk of lipotoxicity and concomitant mitochondrial dys-
function [90].

Moreover, the brain's energy-intensive activities and high pro-
tein biosynthesis rates must remain consistent throughout the neu-
ron's lifetime. This persistent demand underpins the increased sensi-
tivity of neurons to disruptions in mitochondrial and endoplasmic
reticulum (ER) functions, manifesting as mitochondrial stress and
ER, respectively [25]. In particular, mitochondrial stress often coin-
cides with oxidative stress, where imbalanced overproduction of re-
active  oxygen species  (ROS) results  in  genomic,  proteomic,  and
lipid membrane damage. This accumulation of damage is involved
in the formation of abnormal proteins, such as amyloids and prion-
like proteins, which contribute further to cognitive aging and neu-
rodegenerative diseases [91, 92]. Although traditionally associated
with  neurodegenerative  disorders  such  as  Alzheimer's,  Hunting-
ton's, and Parkinson's disease, it is now recognized that oxidative
stress  is  involved in  neuropsychiatric  conditions  such as  anxiety
and depression [93-95].

In tissues characterized by high pro-inflammatory tone, such as
integumentary tissues and the immune system, there exists an ac-
tive cellular turnover of epitheliocytes and lymphocytes, with rest-
ing immune memory cells being the exception [96, 97]. On the con-
trary, neurons are postmitotic and have limited regenerative poten-
tial [98]. Aging neurons thus accumulate genomic and proteomic
damage, instigating pro-inflammatory stress, which culminates in
apoptosis and a resultant decrease in neuronal density within the
CNS [99].

The DNA damage response (DDR) serves as a central regula-
tor in the management of cellular stress, detecting genomic lesions,
and activating a complex network of downstream factors, mediated
by kinases such as ATM serine/threonine kinase. These factors ulti-
mately dictate the fate of the cell, driving it toward survival, follow-
ing DNA repair, or cell death as a result of apoptosis [100]. Key
proteins such as ATM, p53, and p21 serve as integrators, evaluat-
ing various inputs to balance these dichotomous outcomes [100].

Given that neurons are postmitotic with limited regenerative ca-
pacity,  DDR  in  these  cells  is  geared  toward  promoting  survival
over apoptosis (regulating apoptosis in different directions, prevent-
ing its  premature  development).  Specifically,  activated ATM ki-
nase in neurons stimulates autophagy and maintains the lysosoma-
l-mitochondrial axis, thus dampening apoptotic pathways, although
without forestalling neuronal aging [101]. Although ATM-mediat-
ed autophagy offers a temporary respite from apoptosis, it does not
confer indefinite resistance to cell death. Ultimately, neurons suc-
cumb not only to apoptosis but also to programmed necrosis mech-
anisms such as pyroptosis, particularly when inflammasomes are
hyperfunctional [102]. In this context, the release of damage-associ-
ated molecular patterns (DAMPs) from compromised cells exacer-
bates tissue stress and can induce neuroinflammation by binding to
pattern recognition receptors (PRR) in glial cells [103].

Consequently, inflammasomes, particularly the NLRP3 varie-
ty, become a focal point, precipitating the secretion of pro-inflam-
matory cytokines such as IL-1β and IL-18 and further perpetuating
CS. The triggers for inflammasome assembly range from molecu-
lar patterns associated with microbial pathogens (PAMPs) and en-
dogenous DAMPs to chronic cerebral hypoperfusion, hypoxia, exci-
totoxicity of neurotransmitters, oxidative stress, and fluctuations in
intracellular cAMP [25, 103].

Thus,  CS in  neurons is  similar  to  navigating between Scylla
and  Charybdis;  the  cell  must  mitigate  damaging  factors  without
eliciting  secondary  harm from the  very  mechanisms designed  to
protect it. This is particularly pertinent in the context of autophagy,
a double-edged sword. Depending on severity and context, autopha-
gy can either resolve CS by degrading aberrant protein aggregates
and  dysfunctional  mitochondria  (as  in  mitophagy)  or  exacerbate
neuronal damage and perpetuate chronic neuroinflammation [104,
105].

3.1.1. The Role of Calcium Cations in the Activation of Neurons

The role of calcium cations (Ca2+) in neuronal function and acti-
vation is fundamental and intricate. In fact, normal neuronal func-
tions require the continuous modulation of ion concentrations, in-
cluding calcium, sodium, and potassium, as part of cellular homeos-
tasis. This modulation is critical; dysregulation can result in cellu-
lar dysfunction and subsequent damage [106].

The endoplasmic reticulum (ER) serves as a key source of Ca2+

release into the cytoplasm, affecting the excitation of neurons and
contractile tissues [106]. However, the same mechanism also pre-
cipitates ER stress, a widespread issue that affects nearly all cell
types [107]. This calcium mobilization can activate calmodulin-de-
pendent  protein  kinases  (CaMK),  which  may  contribute  to  CS
[108].

Furthermore, the balance of neurotransmitter action is crucial
in this context. An imbalance, specifically the hyperactivation of
neurotransmitter receptors such as NMDAR1-3, can induce excito-
toxicity, a toxic overstimulation of neurons. These receptors selec-
tively bind to N-methyl-D-aspartate (NMDA) and are deeply in-
volved in mediating excitotoxic damage [78, 109, 110].

Interestingly, a shared network of signaling pathways appears
to be the basis for intracellular Ca2+  mobilization of intracellular
Ca2+ in response to neurotransmitters and inflammatory mediators
alike. These pathways involve mediators such as inositol-3-phos-
phate (IP3), phosphoinositide 3-kinases (PI3K), mitogen-activated
protein kinases (MAPK), specifically ERK1/2, and members of the
protein kinase C family (PKC) [111]. Common to the initiation of
these signaling cascades are membrane proteins, such as G protein-
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coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs),
which often serve as upstream triggers.

In summary, calcium cations play a dual role in neurons: they
are indispensable for normal function, but can contribute to CS and
dysfunction if not tightly regulated. The pathways governing calci-
um mobilization are complex, involve a host of molecular players,
and intersect with other signaling pathways that respond to various
forms of cellular stress and damage. This makes control of calcium
dynamics not only a matter of neuronal excitability but also a cen-
tral  issue  in  cellular  health  and  pathology.  More  research  is  re-
quired to fully elucidate these complex interactions and develop tar-
geted interventions for disorders characterized by calcium dysregu-
lation.

3.1.2. Metabotropic Receptors GPCR and RTK in Nervous Tis-
sue, Association with Cellular Stress

The canonical perspective posited G-protein-coupled receptors
(GPCRs) and receptor tyrosine kinases (RTKs) as distinct and inde-
pendent signaling machineries. However, this point of view under-
went a paradigm shift following the seminal work by Daub et al.
(1996), which revealed rapid tyrosine phosphorylation of epider-
mal  growth  factor  receptors  (EGFRs,  ErbB-1)  after  stimulation
with known GPCR agonists [112]. This key discovery established
the concept of transactivation, in which the GPCR and RTK signal-
ing pathways are not only parallel, but can directly influence each
other.

The  transactivation  of  RTK  by  GPCR  can  occur  in  both  li-
gand-dependent and ligand-independent fashions [113]. In the li-
gand-dependent mechanism, Gβγ subunits of activated G proteins
facilitate the activation of membrane proteases MMP and ADAM,
which subsequently cleave the proformas of RTK ligands attached
to  the  components  of  the  extracellular  matrix.  These  ligands  are
then liberated to interact with their  corresponding RTKs. On the
contrary, ligand-independent transactivation involves the activation
of RTK through the phosphorylation of tyrosine residues at their C-
termini by GPCR-activated effector proteins such as Src and PKC
kinases. Additionally, second messenger molecules, such as reac-
tive oxygen species (ROS), can directly initiate RTK activation.

Within  the  human genome,  there  are  90  tyrosine  kinases,  of
which 58 are classified as RTKs. These RTKs are divided into 20
subfamilies [114]. Neurogenic RTKs encompass nerve growth fac-
tor  receptors  (NGFRs),  tropomyosin  receptor  kinase  receptors
(TrkB, TrkA, TrkC), glial cell-derived neurotrophic factor receptor
(GFR),  fibroblast  growth  factor  receptors  (FGFR1-4),  platelet-
derived growth factor receptors (PDGFRα/β), and others such as
EGF and neuregulin receptors (ErbB1-4), and receptors for insulin
and insulin-like growth factor (IR and IGFR) [114-121].

Simultaneously, RTKs and GPCRs not only engage in mutual
regulation but also utilize the same components of signaling path-
ways related to cellular pro-inflammatory stress (CS). Such compo-
nents include Ras small GTPases, calcium mobilization from the
endoplasmic reticulum, and specific kinases such as CaMK, PI3K,
PKB (AKT), PKC, and MAPK.

On  the  other  hand,  most  neurotransmitters  interact  through
GPCRs.  These  neurotransmitters  include  catecholamines,  sero-
tonin, histamine, acetylcholine, GABA, endopioids, endocannabi-
noids, substance P, and neurokinin 1. Furthermore, glutamate acts
via metabotropic receptors (mGluR), and purine mediators operate
through AR (P1R) and P2YR receptors [122, 123]. Activation of
GPCRs typically results in enhanced intracellular signaling aimed
at both executing specific cellular functions and maintaining key as-
pects of homeostasis. However, hyperactivation of these receptors

can lead to a loss of normal physiological properties of the cell and
a disruption of cellular and tissue homeostasis [124].

Structurally, GPCRs are integral membrane proteins character-
ized by a signature arrangement of seven transmembrane helices
and four intracellular and extracellular loops each [125]. Their pivo-
tal role in cellular signaling has made them prime pharmacological
targets [126]. However, their inherent promiscuity presents a chal-
lenge; GPCRs have the propensity to interact with multiple subfam-
ilies of G proteins. Consequently, a single ligand has the ability to
act on multiple G proteins, thus activating a network of signaling
pathways through various GPCRs, some of which belong to differ-
ent  subfamilies  of  G  proteins  [127].  This  complexity  impedes
straightforward  analysis  and  predictions  on  the  specificity  of  li-
gand-induced responses in the context of individual GPCRs (Fig.
3).

Heterotrimeric  G  proteins  associated  with  GPCRs  comprise
four different subfamilies (Gs, Gi/o, Gq/11 and G12/13), classified
according to the functional and structural homology of their α-subu-
nits [128]. In particular, the human Gq/11 subfamily extends be-
yond Gq and G11, including G14 (predominantly found in the kid-
neys,  lungs,  and liver)  and G16 (exclusively expressed in hema-
topoietic cells) [129]. Each Gα subunit functions as a GTP binding
protein with intrinsic GTPase activity, while the remaining subu-
nits, Gβ and Gγ, form an integral and inseparable complex com-
monly called the Gβγ subunit.

Upon binding to the ligand, the activated GPCR facilitates the
dissociation of the Gαβγ complex into its Gα and Gβγ components
by  catalyzing  the  exchange  of  GDP  for  GTP  in  the  Gα  subunit
(Fig. S1). Subsequently, both the liberated Gα-GTP subunit and the
membrane-associated Gβγ dimer orchestrate several downstream
signaling events, the specifics of which are dictated primarily by
the type of Gα subunit involved (Fig. S1). After fulfilling its GT-
Pase function and hydrolyzing GTP to GDP and inorganic phos-
phate,  the  Gα-GDP  subunit  reassociates  with  the  Gβγ  complex,
thus inactivating the GPCR. Concurrently, the activity of GPCRs
can be modulated by pro-inflammatory cytokines such as TNF-α
and IL-6, among other inflammatory mediators [130].

It should be noted that while the main ionotropic receptor for
neuron activation, NMDAR, is not a GPCR, its activity can be mod-
ulated  by  various  neurotransmitters  acting  through  metabotropic
GPCRs [131].

3.1.3. The Role of Phospholipase C (PLC) as Links in GPCR Sig-
naling Pathways

GPCR activation has traditionally been evaluated through the
production  of  second  messengers  such  as  cyclic  adenosine
monophosphate (cAMP), phospholipase C (PLC), inositol trisphos-
phate (IP3) and intracellular Ca2+ mobilization. The primary activa-
tor of PLC is the activated form of the Gq α-subunit (Gαq). Howev-
er,  certain  PLC  isoforms  can  also  be  activated  by  Gβγ  dimers,
notably those associated with Gi/o and Gq proteins [132-134]. On
the α-subunits of Go proteins, they have been shown to inhibit PLC
[135].

Once activated, PLC catalyzes the hydrolysis of phosphatidyli-
nositol-4,5-bisphosphate (PIP2) in the cellular membrane. This en-
zymatic  activity  produces  two  secondary  messengers:  diacylg-
lycerol (DAG) and inositol-1,4,5-triphosphate (IP3-1,4,5). DAG re-
mains  embedded  within  the  lipid  bilayer  of  the  cell  membrane,
while  IP3-1,4,5  is  released  into  the  cytosol.  Subsequently,  these
messengers  facilitate  additional  signaling  pathways,  primarily
through activation of protein kinase C (PKC) and mobilization of
intracellular Ca2+ reserves [136] (Fig. S1).
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Fig. (3). Schematic structure of an unactivated GPCR bound to a trimeric G protein (Gαβγ). Note: The GPCR consists of seven domains or
transmembrane helices (H1-7), four extracellular loops (E1-4), and four intracellular loops (C1-4). A trimeric G protein is associated with
GPCR, which, upon activation and exchange of GDP for GTP in the α subunit of receptors, dissociates into Gα and Gβγ, triggering various
signaling pathways. (A higher resolution/colour version of this figure is available in the electronic copy of the article).

The  role  of  PLC  in  GPCR  signaling  underscores  its  pivotal
function as a link between receptor activation and downstream cel-
lular  responses.  By  serving  as  a  catalyst  in  the  formation  of  se-
condary  messengers,  PLC  orchestrates  a  cascade  of  signaling
events that have far-reaching implications for cellular physiology.

3.1.4. The Role of Protein Kinase C

The PKC protein family is an integral component of the expan-
sive  ABC  protein  kinase  superfamily.  This  superfamily  also  in-
cludes Protein Kinase A (PKA), Protein Kinase B (PKB, also syn-
onymous with AKT), and PKC [137]. Various isoforms of PKC are
activated by a multitude of receptors, including those for growth
factors, cytokines, eicosanoids, and hormones. Activation typically
occurs  via  G-proteins,  tyrosine  kinases,  and  PLC.  PKC  plays  a
pleiotropic role in governing numerous physiological and pathologi-
cal responses [138-140].

In particular, different PKC isoforms have been implicated in
oxidative stress, regulation of cytokine-induced apoptosis, activa-
tion of the pro-inflammatory transcription factor NF-κB, and vari-
ous mitogen-activated protein kinases (MAPKs), including extracel-
lular signal-regulated kinase (ERK). These isoforms also influence
the  development  of  a  secretory  and  receptor  pro-inflammatory
phenotype in both immunocompetent and other cell types. These ac-
tions are relevant not only during inflammatory responses, but also
during normal physiological processes [141-146].

Furthermore, PKC modulates the signaling pathways of several
neurotransmitters such as acetylcholine [147], N-methyl-D-aspar-
tate (NMDA) [148],  serotonin [149],  catecholamines [150,  151],
and  substance  P  [152].  Consequently,  PKC regulates  the  release
and  reception  of  many  neurotransmitters  at  synaptic  sites
[153-155].

When activated by Gq, PKC can phosphorylate and activate L-
type calcium channels in neurons, cardiac cells, and smooth muscle
cells.  This action often results in a vasoconstrictive effect [156].
PKC also enhances calcium mobilization by activating TRPC ion
channels in vascular smooth muscle, TRPV1 channels in the CNS
and immune system -particularly related to inflammation and pain
perception - and TPRM channels in the nervous system [157].

Many regulatory effects of PKCs can be achieved by activating
Src family kinases, including Src and Fyn [158-162]. In particular,
Src kinases are also integral to cytokine signaling in various inflam-
matory processes [163-166]. Src kinases are involved in nervous tis-
sue embryogenesis and, in the adult brain, modulate neuronal posi-
tioning memory and learning mechanisms by affecting synaptic mo-
bility and promoting dendritic and axonal development [167-170].
Currently, Src kinases are involved in various neurological diseas-
es. Moreover, both Src kinase and PKC can potentiate NMDAR ex-
pression, a process that can have adaptive or deleterious implica-
tions through NMDA excitotoxicity [171].

Some  PKCs,  mediated  by  Src  kinases,  can  activate  the
PI3K/AKT and MAPK-ERK signaling pathways [172]. However,
these actions can be bidirectional, depending on the specific iso-
forms of PKC involved [173]. Furthermore, PKC can activate ERK
through the Raf/ERK1/2, pathway, as demonstrated in mechanical-
ly stressed endothelial cells [174].

In  neurons,  both  excitatory  (glutamatergic)  and  inhibitory
(GABAergic), PKC has been shown to activate the pro-inflammato-
ry transcription factor NF-κB [175, 176]. PKC can activate NF-κB
via  multiple  pathways,  including  the  PKC/ERK/NF-κB  and
PKC/MEK/ERK/NF-κB signaling cascades [177-179]. It should al-
so be noted that neurotransmitter-induced activation through PKC
can target not only ERK but also other MAPKs such as JNK and
p38,  particularly  through  the  GPCR/Gq/PKC/Sc  kinase/MAPK
pathway. These pathways may result in more pronounced NF-κB
activation of NF-κB compared to ERK [180]. Moreover, PKC can
directly activate NF-κB via phosphorylation of IKKα [181].

PKC, which functions as a crucial element in neurons and glial
cells, actively participates in the phenomena of brain aging, neu-
rodegeneration,  and  various  forms  of  neuroinflammation
[182-184].

3.1.5.  The  Role  of  the  Transcription  Factor  NF-kB in  Normal
and Neuroinflammation

The Nuclear Factor-κB (NF-κB/Rel) family, comprising NF-k-
B1, NF-kB2, RelA, RelB and c-Rel, which together form 15 dist-
inct NF-κB dimers, serves as a critical set of transcription factors
that  are  instrumental  in  modulating  the  expression  of  inducible
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genes. These factors are particularly important when cells are en-
deavoring to restore homeostasis [185]. Situated at the core of cellu-
lar signaling during CS development, NF-κB plays a vital role in
orchestrating cellular responses to oxidative stress. This is especial-
ly  true  in  immunocytes  and  various  other  cell  types,  during  the
onset and progression of numerous inflammatory conditions [186,
187].

In the context of the immune system, NF-κB is indispensable
for a wide spectrum of functions, ranging from acute inflammatory
responses to the formation of secondary lymphoid organs. Beyond
its immunological scope, NF-κB is vital for the survival, prolifera-
tion, and differentiation of nearly all types of human cells. Regard-
ing  neuroinflammation,  the  NF-κB pathways  are  instrumental  in
modulating the expression of pro-inflammatory genes, including cy-
tokines, chemokines, and adhesion molecules [188].

Moreover, the role of NF-κB extends to the neural sphere, par-
ticularly in the regulation of synaptic plasticity. Activation of NF-
κB signaling pathways through excitatory neurotransmission may
well underlie the function of this transcription factor in cognitive
behavior,  both  in  healthy  states  and  in  pathological  conditions
[175]. Furthermore, the expression of NF-κB has been implicated
in reducing the probability of apoptosis in aging neurons, acting as
a protective mechanism against age-related neurodegenerative dis-
eases [189, 190].

However, it is crucial to note that unbalanced overexpression
of NF-κB in neurons and glial cells can have deleterious effects.
Such dysregulation increases the propensity for pyroptosis and cell
death, manifesting, for example, in depressive disorders [191]. This
aberrant activity of NF-κB serves as a key driver in the pathogene-
sis  of  both  neuroinflammation  and  neurodegenerative  diseases
[192,  193].

In summary, NF-κB serves a dual role, acting as both a guar-
dian of cellular homeostasis and a potential harbinger of cellular
dysfunction, depending on the context and balance of its expres-
sion.

3.1.6. Phosphoinositol 3-kinase Signaling Pathways (PI3K)

Most GPCRs activate PI3K, similarly to RTKs, through small
GTPases. These GTPases are activated by the α subunit of various
G proteins such as G12/13, Gi/o, Gq/11 and Gq, or directly through
G βγ dimers (Fig. S1) [194-196]. Currently, Gq not only activates
PI3K through protein kinase C (PKC) and small GTPases, but can
also  directly  inhibit  the  catalytic  subunit  of  the  catalytic  subunit
PI3K p110a catalytic subunit in vitro [197]. Subsequent research
confirmed the potential for Gq inhibition of PI3K [198]. This evi-
dence  underscores  that  CS  activation  pathways  initiate  negative
feedback  mechanisms  aimed  at  resolving  CS.  Consequently,  the
pro-inflammatory and anti-inflammatory mechanisms of CS should
not be considered in isolation; they are interconnected components
of a unified system.

Class I PI3K phosphorylates phosphatidylinositol-4,5-bisphos-
phate to form phosphatidylinositol-3,4,5-triphosphate. Upon hydrol-
ysis  of  the  ester  bond  between  phosphate  and  inositol,  inosi-
tol-3,4,5-triphosphate (IP3-3,4,5) is formed. This molecule, similar
to IP3-1,4,5, facilitates the release of Ca2+ through the ionotropic re-
ceptors IP3 R1-3 (calcium channels). This process initiates a cas-
cade of regulatory effects, including the activation of AKT, PKC,
and small GTPases such as Ras, Rac, and Rho [199]. Activation of
these enzymes subsequently triggers a wider array of downstream
other CS inducers (Fig. S1).

The PI3K/AKT/mTOR pathway is highly versatile and preva-
lent in human cells. Regulation of processes that include preven-

tion, growth, cell proliferation, DNA repair, and metabolism, pri-
marily anabolism. It also inhibits macroautophagy and participates
in various other CS processes [25]. This pathway is activated by in-
sulin, multiple growth factors, cytokines, and most neurotransmit-
ters [199, 200]. Inhibitors of this pathway have therapeutic poten-
tial in the treatment of autism and other neuropsychiatric and neu-
rodegenerative  disorders  [201].  Interestingly,  the  PI3K/AKT/m-
TOR signaling pathway, while contributing to moderate manifesta-
tions of CS, can also enhance anti-inflammatory effects and limit
neuroinflammation [202]. For example, the antidepressant-like ef-
fects of valproic acid may be linked to the activation of this path-
way [203]. The pathway can also mitigate NMDA excitotoxicity as-
sociated with pathological autophagy hyperfunction [204]. Howev-
er, overexpression of this pathway in an experimental model of in-
tracerebral hemorrhage in rats exacerbates the production of pro-in-
flammatory cytokines and neuroinflammation [205].

Cytokines, growth factors, insulin, and numerous neurotrans-
mitters can activate the more pro-inflammatory PI3K/AKT/NF-κB
signaling pathway in a variety of cells, thus decreasing the probabil-
ity  of  apoptosis,  particularly  in  neurons [206-211].  Furthermore,
the PI3K/AKT pathway triggers two critical DDR transcription fac-
tors, FOXO, and p53, which are important for neuronal survival or,
conversely, apoptosis in the context of catastrophic DNA damage
[212]. In general, the PI3K/AKT pathway can contribute in a varie-
ty of ways to pro-inflammatory and anti-inflammatory responses,
depending on the context of CS mechanisms and neural cell types.
Current paradigms suggest that PI3K/AKT is crucial in initiating
the production of pro-inflammatory mediators in microglia, after
stimulation of  these  stromal  macrophages  in  the  development  of
neuroinflammation [213].

3.1.7. MAPK - ERK Paths

Mitogen-activated protein  kinases  (MAPKs)  serve as  central
components in various cell signaling CS pathways in virtually all
eukaryotes [214]. A significant evolutionary surge in the duplica-
tion  of  the  MARK  gene  occurred  after  the  divergence  of  verte-
brates from invertebrates [215]. This evolutionary advancement is
closely correlated with the progressive maturation of the vertebrate
immune system and intricate inflammation pathways [216-218].

The MAPK family in humans comprises three distinct subfami-
lies: extracellular signal-regulated kinases (ERK1/2), p38 kinases
(p38α,  p38β,  p38γ,  and  p38δ),  and  N-terminal  kinases  of  c-Jun
(JNK1-3). Typically, growth factors, neurotransmitters, and other
relatively mild inducers of CS are mediators of ERK signaling path-
ways. On the contrary, JNK and p38 are activated in response to
more robust stress signals or intracellular damage [25, 219].

The ERK pathway is a complex and highly branched signaling
cascade that regulates a myriad of cellular functions such as apopto-
sis and cell adaptation to low-intensity stressors. ERKs play a par-
ticularly significant role in neurotransmitter function, possessing
minimal pro-inflammatory potential among MAPKs but are crucial
for nerve cell survival under both normal and moderate stress condi-
tions. The ERK cascade is a principal signaling pathway that af-
fects a broad range of cellular processes, including, but not limited
to,  proliferation,  differentiation,  learning  and  memory,  develop-
ment, and synaptic plasticity. It maintains the functional stability of
glial cells and neurons [220-222]. However, dysregulated activa-
tion of ERK and other pro-inflammatory pathways can contribute
to neuronal damage and dysfunction [223-225].

ERK activation is modulated through various GPCR regulatory
channels, including small GTPases that govern the Ras/Ras/MEK/
ERK, PI3K/ERK, and PKC/MEK/ERK pathways [226-228] (Fig.
S1). However, there exists conflicting evidence suggesting that the
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PI3K/AKT pathway can phosphorylate Raf, effectively down-regu-
lating  its  activity  on  downstream  substrates,  such  as  MEK/ERK
[229]. This presence of multidirectional regulatory mechanisms os-
tensibly renders ERK activity more balanced and controllable.

Furthermore, activation of GPCR and RTK stimulates the for-
mation of the β-arrestin/ERK signaling complex. This can occur in-
dependently of G proteins or involve the participation of the Gβγ
dimer [230-233]. GPCRs can activate MAPKs (including ERK and
JNK) through the recruitment of β-arrestin via the Raf/MEK/ERK
and ASK/MKK/JNK pathways [234]. Concurrently, β-arrestin facil-
itates  desensitization  and  internalization  of  the  GPCR through  a
negative feedback mechanism [198, 234].

3.1.8.  Cyclin-dependent  Kinase-5  (Cdk5):  Regulatory  Mecha-
nisms and Implications in Neurobiology

Cyclin-dependent kinase-5 (Cdk5), a prominent member of the
cyclin-dependent kinase family, is ubiquitously expressed. Unlike
other  Cdks,  Cdk5  exhibits  unique  functionalities  specifically  in
postmitotic  neurons,  a  context  where  other  members  of  the  cy-
clin-dependent  kinase  family  are  not  expressed  or  inactive
[235-238]. Cdk5 does not participate in cell cycle progression in
proliferating cells. Instead, it plays a dual role: either contributing
to genome stabilization and survival in postmitotic neurons or exert-
ing aberrant effects when dysregulated.  Deregulation of Cdk5 in
postmitotic neurons can culminate in cell death.

During embryogenesis, Cdk5 is indispensable for brain devel-
opment, and in the adult brain, it plays a crucial role in various neu-
ral processes, including, but not limited to, higher cognitive func-
tions such as learning and memory formation. However, aberrant
activity of Cdk5 is involved in the pathogenesis of several neurolog-
ical disorders, including Alzheimer's disease, Parkinson's disease,
and Huntington's disease, leading to neurotoxic outcomes [237].

The regulatory mechanisms of Cdk5 are complex and multi-
faceted. Cdk5 can be activated by a multitude of neurotransmitters
and pro-inflammatory factors through pathways such as PI3K and
calcium ions. On the contrary, its activity is inhibited by the light
chain enhancer NF-κB. Furthermore, Cdk5 is subject to multidirec-
tional regulation by mitogen-activated protein kinases (MARKs),
specifically ERK and JNK [235, 237].

In psychopathological conditions such as emotional stress, de-
pression, and neuroinflammation, the role of Cdk5 can be paradoxi-
cal.  It  can  serve  as  a  neuroprotective  factor  or,  in  contrast,  con-
tribute to neurodegeneration, depending on the specific pathologi-
cal context [237, 239-241].

3.1.9.  Small  GTPases:  Key  Regulators  in  Neural  Development
and Pathology

The G proteins are classified into two distinct subclasses: (1)
heterotrimeric  G  proteins,  comprising  Gα,  Gβ,  and  Gγ  subunits,
which  are  predominantly  associated  with  GPCRs,  and  (2)  small
monomeric G proteins, also known as small GTPases [242, 243].
Small  GTPases are evolutionarily conserved proteins,  ranging in
size from 20 to 25 kDa, and belong to the larger Ras superfamily,
which is further divided into five primary subfamilies: Ras, Rho,
Rab, Ran, and Arf. Similarly to other G proteins, small GTPases
have the ability to bind and hydrolyze guanosine triphosphate (GT-
P) [242, 243].

The activation of small GTPases is often mediated by a variety
of ligands, including pro-inflammatory cytokines, growth factors,
and neurotransmitters. These ligands interact with membrane-asso-
ciated G proteins, primarily through GPCR, RTKs, and non-recep-

tor  tyrosine  kinases,  facilitating  downstream  signaling  events
[244-247].  Furthermore,  specific  G proteins  such as  G12/13 and
Gq also elicit signaling through small GTPases [128, 248, 249].

Small GTPases play a crucial role in numerous cellular process-
es essential for the comprehensive development and maintenance
of the nervous system. They are involved in neurogenesis, cell dif-
ferentiation, gene expression, cytoskeletal organization, membrane
and protein transport, vesicular transport, synaptic plasticity, and
neuronal survival [250-252]. Specifically, small GTPases function
as integral enzymes that transduce extracellular signals into neural
responses, facilitating the construction of neural networks and sy-
naptic  plasticity.  They  can  act  as  independent  activators  of  the
ERK signaling pathway via the Ras /Ras/MEK/ERK cascade when
neurotransmitters interact with GPCR [253].

Furthermore, small GTPases such as Ras, Rho, and Rab have
been shown to activate PI3K and various signaling pathways relat-
ed to PI3K [254-256]. Some Rab-GTPases also regulate the proper
expression of GPCRs on the cell surface and are involved in multi-
ple steps of GPCR biosynthesis and processing [257]. Small GTPas-
es can also activate PKC, for example, through the Rho-GTPase/P-
KC pathway [258].

Given their wide range of functions, it is hardly surprising that
abnormalities in small GTPase activity are linked to a myriad of
cerebral diseases, including Alzheimer's disease, Parkinson's dis-
ease, intellectual disabilities, epilepsy, substance abuse, Hunting-
ton's  disease,  and  amyotrophic  lateral  sclerosis,  among  others
[250-252]. Importantly, small GTPases are intricately involved in
the mechanisms of neuroinflammation, further underscoring their
importance in neural pathophysiology [251, 252, 259].

3.1.10. The Role of Cyclic Nucleotides in GPCR-mediated Signal
Transduction: Complex Modulators of Cellular Physiology and
Pathophysiology

Cyclic  nucleotides,  mainly  cyclic  adenosine  monophosphate
(cAMP) and cyclic guanosine monophosphate (cGMP), serve as se-
condary  pivotal  messengers  in  GPCR  signaling  [260,  261].  The
concentration of these nucleotides in the cytoplasm modulates vari-
ous cellular activities, with some GPCRs stimulating adenylate cy-
clase  (AC)  through  Gs  proteins  to  increase  cAMP  levels,  and
others inhibiting AC through Gi and Go proteins (Fig. S1). Further-
more, the βγ subunits released after Gq-coupled GPCR activation
play  a  multidirectional  regulatory  role  in  six  of  the  nine  mem-
brane-bound AC isoforms [262].

Cyclic nucleotides govern a wide variety of cell functions, in-
cluding cell growth and differentiation, gene transcription, protein
expression, synaptic plasticity, neurotransmission, and the mainte-
nance of cellular homeostasis. Although the AC/cAMP/protein ki-
nase A (PKA) and guanylate cyclase (GC)/cGMP/protein kinase G
(PKG) signaling axes are not explicitly categorized as pro-inflam-
matory pathways, their ubiquitous role in metabolic processes, cell
cycle  regulation,  and  ion  channel  activity  makes  them  intersect
with  cytokine  signaling  pathways,  especially  in  the  CNS
[263-265].

At elevated concentrations, cAMP generally exerts anti-inflam-
matory and tissue-protective effects, primarily by sequestering cyto-
plasmic calcium [263-265]. However, the function of cAMP in cel-
lular processes is far from straightforward. For example, PKA phos-
phorylates  various  proteins  that  regulate  ion  flux  through the  L-
type  calcium  channel  (LCC)  and  the  ryanodine  receptor  (RyR),
thus  modulating  excitation-contraction  coupling  [266].  Further-
more, cAMP production is inhibited in the Gi/o G protein pathway,
as well as by voltage-gated calcium channels (VGCC) [266].
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In particular, the signaling mechanisms for cAMP and calcium
are not isolated, but rather often interact in an antagonistic, syner-
gistic or redundant manner [262]. The complexity of the cAMP/P-
KA pathway extends to its multiplicity of interacting components:
nine membrane-associated ACs, one cytosolic Ca2+-sensitive AC,
eight phosphodiesterase families, multiple PKA subunits, and up to
six cAMP-dependent ion channels [267, 268].

Furthermore, all isoforms of membrane AC can be modulated
by calcium, either directly or indirectly, through calcium-binding
proteins  such  as  calmodulin  (CaM),  CaM  kinases  (CaMK),
calcineurin (CaN), PKC or Gq-linked activation [267, 268]. This in-
tricate network of interactions adds layers of complexity to cAMP-
mediated cell responses, making its effects highly context-depen-
dent. For example, cAMP can both inhibit and stimulate cell prolif-
eration  depending  on  cell  type  and  can  influence  cell  outcomes
through ambiguous interactions with the Ras/Ras/MEK/ERK path-
way [267, 268].

In certain cellular contexts, PKA exhibits a multifaceted role in
modulating  signaling  pathways.  Not  only  does  PKA  modulate
ERK, but it  also phosphorylates and activates p38 MAPK [269].
Furthermore, PKA can stimulate NMDAR expression in synapses
by activating CaMKII and ERK, in collaboration with mobilized
calcium, PKC, and Src kinase [270]. This synergistic action can am-
plify excitotoxicity mediated by NMDA under specific conditions.
Furthermore, cAMP regulates various phosphodiesterases, thus of-
fering negative feedback mechanisms that control both the duration
and intensity of cAMP signaling [271]. These observations do not
unequivocally categorize the cAMP/PKA pathway as an inhibitor
of cell signaling during the pro-inflammatory CS development. In-
stead, they suggest that the cAMP/PKA pathway exerts a complex
modulatory impact on several mechanisms with potential pro-in-
flammatory implications.

The cGMP signaling pathway, initiated primarily through ni-
tric oxide (NO), serves as another pivotal component in cell signal-
ing  with  a  wide  range  of  physiological  implications  [272,  273].
Constitutive neuronal NO synthase (nNOS) is activated directly via
calcium/calmodulin  (Ca2+/CaM)  or  indirectly  through  the  Ca2+/
CaM/CaMK pathway [274, 275]. However, the role of these activat-
ing pathways is dual-faceted.

For example, CaMKII can redirect nNOS from NO to super-
oxide anion (O2-) production, which can exacerbate oxidative stress
and decrease the protective role of the NO/сGMP pathway [276].
Conversely, direct action of Ca2+/CaM on nNOS competitively in-
hibits CaMKII through NO formation. CaMKII hyperactivity can
therefore lead to excitotoxicity in neurons, which is further ampli-
fied by increased oxidative stress (O2-) and reduced NO/cGMP-me-
diated protection. Furthermore, reactive oxygen species (ROS) fur-
ther activate CaMKII in a positive feedback loop, serving as an ad-
ditional stimulus for NF-κB activation of NF-B and the progression
of CS [277].

In  neurons,  the  main  physiological  NO  receptor  is  soluble
guanylate  cyclase  (sGC),  which  is  activated  by  NO  to  produce
cGMP [278]. The NO/cGMP/protein kinase G (PKG) pathway is
the main effector through which NO exerts its influence. Elevated
levels of cellular cGMP activate PKG and other cGMP-dependent
kinases, phosphodiesterases (PDEs), and ion channels that affect
various cellular processes [279]. These range from calcium seques-
tration to cytoskeletal changes, vascular smooth muscle cell relaxa-
tion, improvement in tissue oxygenation, inhibition of leukocyte ad-
hesion and migration, reduction of platelet aggregation, and even
repair of damaged endothelium. Additionally, this pathway regu-
lates gastrointestinal motility and exerts an inhibitory effect on the

proliferation and migration of vascular smooth muscle cells (VSM-
C).

In  the  context  of  the  central  nervous  system  (CNS),  the
NO/cGMP/PKG pathway plays a particularly crucial role in modu-
lating  neuroinflammation  [280-283].  This  modulation  is  contex-
t-specific and agonists targeting this pathway have shown therapeu-
tic promise in neurodegenerative diseases [283, 284].

In summary, the NO/cGMP pathway constitutes a complex but
vital component of cellular signaling, with specific relevance for
neuroinflammation and neurodegenerative diseases. Its modulation
by the  calcium and CaMK pathways  adds  an  additional  layer  of
complexity, making it a topic of significant interest for therapeutic
intervention strategies. The dual roles of the pathway in both an-
ti-inflammatory and pro-oxidative processes underscore the need
for nuanced understanding and targeted pharmacological modula-
tion.

The intricate relationships between Ca2+, NO, and cGMP in the
CNS present an elaborate signaling network with multifaceted func-
tional implications. Calcium mobilization is known to increase NO
production, thus activating soluble sGC. This chain of events also
influences calcium ion concentrations within the cell by modulat-
ing  (predominantly  inhibiting)  both  intracellular  reserve  release
and membrane transport [285].

From  a  neurophysiological  perspective,  activation  of  the
sGC/cGMP/PKG pathway has been associated with increased exci-
tatory potentials in midbrain neurons mediated by glutamate and
acetylcholine receptors [286]. However, the pathway is susceptible
to  inhibition  under  conditions  of  chronic  stress,  resulting  in  im-
paired memory and learning functions,  particularly in the hippo-
campus [287, 288]. Currently, evidence suggests that sGC stimula-
tion could be neuroprotective by attenuating inflammatory respons-
es and apoptosis in models of neuroinflammation [283].

Within cellular metabolic processes, the cGMP/PKG pathway
activates a multitude of anabolic reactions, including those integral
to cell cycle regulation. In particular, guanylate cyclase has been
implicated in the activation of various (RTK-related and G-protein-
mediated  growth  factors,  such  as  platelet-derived  growth  factor
(PDGF) [284].

However, the role of cGMP/PKG in the development of inflam-
mation and neuronal excitation remains unclear [285-287]. For ex-
ample,  the  activation  of  NLRP3  inflammasomes  in  endothelial
cells  by  tobacco  smoke  has  been  mediated  by  the  cGMP/PKG/-
TACE/TNF-α signaling pathway [289]. Furthermore, gaps persist
in our understanding of the precise mechanisms that activate sGC,
including its post- translational modifications, allosteric regulation,
and interactions with partner proteins [278].

Therefore, the sGC/cGMP/PKG signaling network in the CNS
represents a complex modulatory system with varying implications
for cell physiology, neuroinflammation, and neuronal functions. De-
spite considerable advances in our understanding, unresolved ques-
tions and poorly understood mechanisms require further rigorous in-
vestigation for a more systematic understanding of the roles of this
pathway. This could potentially offer new avenues for targeted ther-
apeutic interventions in the CNS.

3.1.11.  The  Multifaceted  Role  of  CaMKII  in  Stress-induced
Pathologies in Nervous Tissue

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a
crucial mediator in the CNS, involved in the complex interplay of
calcium signaling,  neurotransmitter  release,  and  neuroinflamma-
tion. It is abundantly expressed in the brain, where it has been estab-



12   Current Pharmaceutical Design, XXXX, Vol. XX, No. XX Gusev and Sarapultsev

lished  as  a  key  molecular  player  in  learning  and  memory
[290-292].  Comprising  mainly  α  and  β  isoforms,  CaMKII  influ-
ences a range of cellular activities, including exocytosis of neuro-
transmitter vesicles, ion channel activity, synaptic plasticity, and in-
tracellular transport [293, 294].

In the context of cellular stress, CaMKII plays a critical role in
the activation of neuroinflammatory pathways. This includes inter-
actions  with  Ras  and  Rho  GTPases,  MAPK,  activator  protein  1
(AP-1) and NF-κB transcription factors, as well as the generation
of  eicosanoid  via  the  COX-2/PGE2  pathway  [295,  296].  Kinase
has  been  associated  with  the  development  of  excitotoxicity  and
oxidative stress, conditions that are frequently exacerbated under
psychoemotional stress and depression [297-299].

Furthermore, the role of CaMKII in NO signaling adds another
layer of complexity to its multifunctionality. For example, CaMKI-
I-mediated phosphorylation of nNOS decreases [299-301] NO and
cGMP production  while  increasing  superoxide  generation  [276].
On the contrary, CaMKII can inhibit phosphodiesterase 1 (PDE1),
which is responsible for the degradation of cGMP and cAMP, thus
activating the cGMP/PKG pathway [298]. Furthermore, CaMKII
can modulate the activity of inducible NO synthase (iNOS) vascu-
lar smooth muscle cells (VSMC) and endothelial cells, leading to
the redistribution of iNOS from the cytosol to the membrane and
nuclear compartments [300, 301].

The broad impact of CaMKII is particularly notable in the con-
text of inflammation. The enzyme can influence the angiotensin II
vasopressor mechanisms in VSMC [302] and mediate vasodilation
and  exudative  responses  through  iNOS  during  inflammation
[303-305].  These  roles  fit  the  broader  paradigm  that  associates
low-grade systemic inflammation with hypertension and inhibition
of constitutive NO synthase (cNOS) [37].

Together, the actions of CaMKII in the CNS are multifaceted
and context-dependent, making it an enigmatic but essential partici-
pant  in  cellular  stress  responses.  Its  influence  is  broad,  reaching
from cellular signaling pathways to systemic responses in stress-re-
lated pathologies.

3.2. Pro-inflammatory Factors in Normal Central Nervous Sys-
tem Function

The CNS has long been considered an immune-privileged site,
largely due to the presence of the blood-brain barrier and a relative
scarcity of immune cells within the brain parenchyma. However,
understanding the CNS as an immunologically active environment
has gained considerable attention, mainly attributed to the role of
resident  immune  cells  such  as  microglia  and  perivascular
macrophages  [306].

Microglia  serve  as  primary  immune  sentinels  in  the  CNS,
where they adopt a relatively quiescent phenotype under physiologi-
cal  conditions  [307-316].  This  phenotype is  functionally  aligned
with the neuroprotective state M2, which facilitates CNS homeosta-
sis through efferocytosis, clearance of metabolic waste, and modu-
lation of synaptic plasticity [309-312]. The M2 state contrasts with
the pro-inflammatory M1 state, which is associated with neuroin-
flammation and pathological conditions [311].

According to complement pathways C1q, C3, and CR3 - desig-
nated as the “Eat Me” pathways - as well as the CD47 and SIRPα
“Don't Eat Me” pathways, among others, such as CX3CR1 signal-
ing, quiescent microglia orchestrate the regulation of synaptic plas-
ticity. This physiological process is essential to facilitate the gene-
sis of new synapses [310]. Furthermore, microglia can modulate sy-
naptic architecture modulate synaptic architecture either directly or
indirectly. Direct modulation occurs through intimate neuron-mi-

croglia contact, while indirect modulation is achieved through the
secretion of various cytokines and growth factors [315]. Further-
more, microglia are involved in the regulation of neurotransmis-
sion and contribute to the metabolic sustenance of astrocyte-neuron-
al networks, as well as the remodeling of the extracellular matrix
within the CNS [316].

In several studies, evidence has been presented to suggest that
neurons within an unimpaired cerebral environment not only habitu-
ally express mRNA from the Major Histocompatibility Complex
Class I (MHC-I), but also that this expression is susceptible to mod-
ulation by neuronal activity. Moreover, this expression is temporal-
ly and spatially correlated correlated with recognized locations of
synaptic plasticity [317].

Recent evidence suggests that even under normal conditions,
pro-inflammatory mediators like IL-1β, IL-6, and TNF-α serve criti-
cal role in neuronal plasticity, learning, and memory [313]. Specifi-
cally, IL-6 demonstrates a dual nature; while predominantly known
for its role in immune responses, it also has substantial effects on
neurogenesis and cellular responses under both normal and patho-
logical conditions [318].

This dual role of pro-inflammatory cytokines mirrors that  of
other key elements in the CNS, such as major histocompatibility
complex class I (MHC-I) molecules, which are not only involved
in  immune  responses,  but  also  play  a  role  in  synaptic  plasticity
[317]. Intriguingly, in the nervous system, the association between
the glutamate receptor—NMDAR—and cell signaling factors such
as NF-κB, JAK/STAT, and p53 is discernible even in lower verte-
brates, specifically in zebrafish (Danio rerio) [319]. This observa-
tion underscores the evolutionary conservation of these signaling
pathways  and  their  potential  significance  in  neural  functioning
across diverse taxa.

In particular, the importance of these pro-inflammatory path-
ways  becomes  more  pronounced  under  conditions  that  tread  the
fine line between physiological normalcy and pathological states.
For example, ethanol-induced neuroimmune responses in the CNS
have  been  associated  with  key  pro-inflammatory  cytokines  and
chemokines [320].

In conclusion, the existing literature provides compelling evi-
dence for the intricate involvement of pro-inflammatory factors in
the maintenance of physiological processes in the CNS. Their role
extends beyond simple pathological implications, serving function-
al  functions  in  synaptic  plasticity,  learning,  and memory.  As  re-
search progresses, a nuanced understanding of these dual functions
will provide vital insight into both the normal physiology and the
pathophysiology of the CNS.

3.3.  The Role  of  Cellular  Stress  Mechanisms in  Morbid Psy-
cho-emotional Stress and Depression

The etiology of psycho-emotional stress is multifactorial and is
influenced  by  various  triggers.  These  include  the  imposition  of
self-  isolation  protocols  during  the  COVID-19  pandemic  [321,
322],  psychogenic  and  physical  traumas  such  as  post-traumatic
stress disorder [323, 324], and unresolved psychological conflicts
that  lead to  anxiety  and the perception of  unattainable  life  goals
[325, 326]. Furthermore, the presence of somatic symptoms can ex-
acerbate stress-induced asthenia and depression [327], as well as so-
cial maladaptation [328, 329].

Depression often emerges as a sequel to chronic stress or dis-
tress [330, 331]. In particular, MDD is one of the leading causes of
global  disability  and  shares  numerous  pathogenetic  mechanisms
with chronic stress [332].
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3.3.1. Hypotheses Exploring the Relationship between Stress and
Depression

Morphofunctionally,  stress  and  depression  manifest  through
the presence of hyperexcitable foci in specific neural regions, in-
cluding the cortex, the limbic-reticular complex, and the hypothala-
mic-pituitary-adrenal axis (HPA) [330]. When these foci become
chronic,  they  evolve  into  allostasis  loci,  disrupting  not  only  the
functions of the CNS but also peripheral tissues [330-334]. Various
neuro transduction mechanisms, susceptible to excitotoxicity, neu-
ronal damage, and pro-inflammatory activation of glial cells, play a
role in these processes.

Existing  hypotheses  such  as  the  “monoamine  hypothesis”
[335], the “Glutamate and Neuroplasticity Hypothesis” [336-338],
and  the  “Neurotrophic  Hypothesis”  primarily  focus  on  isolated
molecular pathways and neurotransmitter systems.

The “monoamine hypothesis” posits that the pathogenesis of
stress  and  depression  is  primarily  due  to  the  depletion  of  brain
monoamine neurotransmitters, such as serotonin, norepinephrine,
and dopamine [335].

The “Glutamate and Neuroplasticity Hypothesis” contends that
depressive disorders result from reduced neuroplasticity and dysreg-
ulation triggered by glutamate excitotoxicity. Significant clinical
and experimental evidence accumulated over the last three decades
substantiates the role of the glutamatergic system in the pathophysi-
ology of stress and depression [336-338].

Two additional hypotheses have been proposed to elucidate the
observed reduction in hippocampal volume in depressive disorders:
(1)  the  “Neuroplasticity  Hypothesis”,  focused  on  morphological
changes in hippocampal neurons; and (2) the “Hypothesis of Im-
paired  Neurogenesis  in  the  Dentate  Gyrus  of  the  Hippocampus”
[339].

The 'Neurotrophic Hypothesis' attributes a change in synaptic
plasticity  in  depression  to  impaired  neurotrophic  support  [340,
341]. Neurotrophins, as growth factors, are integral to the forma-
tion, maintenance, and plasticity of neural networks.

To extend our understanding of these interrelated complexities,
we introduce the NIIS Model. This framework posits that pro-in-
flammatory signaling pathways and neurotransmitter pathways, spe-
cifically those involving G-proteins and 5-HT, form an integrated
regulatory network even under physiological conditions. Chronic
stress disrupts this balance, serving as a pathogenetic platform for a
spectrum of neuropsychiatric and psychosomatic disorders, includ-
ing depression. Our model integrates multiple facets of neuroim-
munoinflammation and psychoemotional stress, and offers a com-
prehensive view that considers the synergistic interactions between
the CNS and peripheral systems.

Another hypothesis concerns the disruption of the “long neuro-
nal  chain  of  monoamines”.  According  to  this  model,  both
monoaminergic mechanisms (such as 5-HT neurons in the raphe nu-
clei) and nonmonoaminergic mechanisms (Glu/GABA neurons in
the prefrontal cortex) are critical components of fast-acting antide-
pressant mechanisms. These two systems form an extensive neural
circuit responsible for rapid synaptic plasticity in various regions
of the brain, including the prefrontal cortex [342].

A  seminal  systematic  review  by  Brigitta  B.  (2002)  provides
compelling  evidence  that  chronic  stress  not  only  influences  be-
havior, but also exerts broad effects on the endocrine, immune, and
neurotransmission systems [343]. These findings suggest an intri-
cate interplay between psychoemotional stress and altered relation-
ships between the neuroendocrine and immune systems at the or-
ganismal level. As a consequence, depression may arise from dys-

functions in specific regions of the brain, such as the frontal cortex,
hippocampus, amygdala, and basal ganglia, which are modulated
by these systems in a feedback loop [344].

The complexity and integrative nature of the NIIS Model make
it an essential addition to current academic discussions surrounding
the pathology of stress-induced disorders. It aims to fill the existing
gaps in our understanding by amalgamating insights from diverse
biochemical pathways and molecular mechanisms.

3.3.2. The Nexus Between Oxidative Stress and Psychoemotional
Stress

In normally functioning neurons, there is a consistent forma-
tion and utilization of reactive oxygen species (ROS) taking place
[345]. Furthermore, the coenzyme NADPH -generated through the
pentose phosphate pathway of glucose catabolism - is actively in-
volved in microsomal oxidation processes, including the synthesis
of NO from arginine in neurons and other brain cells [346]. During
psychoemotional distress, an imbalance occurs in favor of oxidant
activities  over  antioxidant  defenses,  resulting  in  oxidative  stress
within hyperactivated brain regions [345, 347].  Moreover,  local-
ized cerebral changes instigated by distress contribute to systemic
pathologies, primarily of cardiovascular nature [348, 349].

This  phenomenon  can  also  be  amplified  into  a  systemic  re-
sponse to oxidative stress, considering the integrative role of the
cardiovascular system [350]. Hence, a vicious cycle is established
that perpetuates neurodegenerative processes in the brain and low-
grade chronic inflammation in peripheral tissues [351, 352]. In cas-
es of severe depression, there is an intricate association between
oxidative stress, pro-inflammatory responses to psychoemotional
stress, serotonergic pathways, neurogenesis, and dysregulated sy-
naptic plasticity [95].

The adaptive or maladaptive consequences of oxidative stress
are contingent on its equilibrium, notably at the level of transcrip-
tion factors with either pro-oxidant or antioxidant functions. This
balance can be represented by the expression ratio of NF-κB to NR-
F2 [25]. Clinical and experimental evidence indicates that pharma-
cological  agents  targeting NRF2-dependent  pathways can confer
protection against depression, whereas NF-κB signaling pathways
exacerbate depression-like behavior [353]. Concomitantly, a dys-
functional pro-oxidant/antioxidant balance leads to variable impair-
ments in the function of constitutive nOS and NO bioavailability in
brain regions implicated in distress and affective disorders. These
include the cortex, hippocampus, amygdala, hypothalamic nuclei,
striatum, and dorsal raphe nucleus (DRN) [354]. Interestingly, both
inhibitors and activators of NO formation have been implicated in
antidepressant effects [354, 355].

3.3.3.  The  Implications  of  DNA  Damage  Response  (DDR)  in
Stress and Depression

Potentiation of pro-oxidant enzyme activity, particularly in the
cell nucleus, together with other factors related to CS, intensifies
genomic damage and compromises the intricate epigenetic mech-
anisms that govern cellular homeostasis [356]. This escalation typi-
cally triggers the activation of DDR defense mechanisms, specifi-
cally in neuronal structures that respond to stress and depression.
As  delineated  in  Section  3.1.6,  neurotransmitters  interfacing
through G-proteins act on key DDR transcription factors that main-
tain neuronal homeostasis. However, these DDR processes can be
detrimentally disrupted under stress and depression conditions.

Given that the turmoil in the neuroendocrine system is not only
localized, induced genomic damage extends its scope to peripheral
tissues as well. For example, chronic stress has a direct impact on
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cell  physiology  through  sustained  or  recurrent  activation  of  the
sympathoadrenal  system,  along  with  the  discharge  of  neuroen-
docrine mediators. This cumulative action is postulated to exacer-
bate genomic damage, particularly affecting pivotal pathways asso-
ciated with biological aging and cellular stress, such as in peripher-
al blood leukocytes [5, 357].

Persistently activated DDR correlates with oxidative neuronal
damage, even in patients who manifest mild cognitive impairment
[358]. Moreover, sustained DDR significantly modulates the neuro-
nal transcriptome, potentially accelerating the senescence pheno-
type in neurons [358]. Another ramification of DDR malfunction is
its association with mitochondrial stress and the ensuing apoptosis
in pathologically activated postmitotic neurons. This scenario can
cause focal neurodegeneration within the brain [359]. Although au-
tophagy could serve as a regulatory mechanism, dysregulated au-
tophagy can induce autophagic cell death and alternative forms of
programmed necrosis.  At  the tissue level,  this  translates  into the
onset  of  neuroinflammation  with  the  involvement  of  microglial
cells [359].

Although these molecular mechanisms have been extensively
investigated in the context of neurodegenerative disorders [360],
they have been relatively underexplored in conditions with subtler
morphological and functional changes of the brain. However, the
potential role of DDR dysfunction in posttraumatic stress disorder
and depression  is  supported  by  the  existing  literature  on  genetic
risk factors and intricate epigenetic malfunctions that contribute to
the etiology of these disorders [361-363].

3.3.4. Interplay of Mitochondrial Stress and Endoplasmic Reticu-
lum (ER) Stress in Depression

The current body of evidence firmly establishes a connection
between mitochondrial dysfunction in various regions of the brain
and  a  variety  of  psychiatric  disorders,  particularly  depression
[364]. Mitochondria are instrumental in ATP synthesis, intracellu-
lar Ca2+-dependent signaling, and ROS regulation, thus facilitating
complex neurophysiological processes such as neurotransmission
and neuroplasticity. However, excessive Ca2+ uptake by mitochon-
dria disrupts ATP synthesis, triggers mitochondrial swelling, releas-
es cytochrome c, and activates the intrinsic apoptosis pathway [25].
Postmortem brain proteomic studies in depressed individuals, cor-
roborated by animal models, reveal that approximately 20% of mi-
tochondrial proteins exhibit significant deviations from normative
levels [365]. This mitochondrial dysfunction, manifested through
mtDNA mutations, aberrant protein expression, mitochondrial un-
folded protein response (UPRmt), ROS imbalance, and ATP defic-
its, culminates in apoptosis, inflammation, and compromised neuro-
genesis and neurotransmission within key areas of the brain, name-
ly the cortex, hippocampus, and striatum [366-368]. Therefore, re-
ducing oxidative stress and improving mitochondrial function can
serve as viable strategies to ameliorate depressive symptoms [369].

Endoplasmic  reticulum  (ER)  stress  shares  mechanistic  links
with  mitochondrial  stress,  including  calcium  mobilization  and
UPR,  largely  mediated  by  inducible  heat  shock  proteins  (HSP).
Both are also involved in CS signaling pathways and are involved
in  autophagy,  with  adaptive  or  maladaptive  outcomes  [25].  ER
stress, manifested through proteomic aberrations such as the accu-
mulation of abnormal, amyloid, and prion-like protein complexes
in neurons and extracellular matrixes, is a hallmark of neurodegen-
erative diseases [370-372]. In particular, evidence of ER stress, pro-
teomic imbalances, and other ER-related anomalies have been doc-
umented in multiple regions of the brain affected by depression and
conditions related to chronic stress (distress) [373-376]. This cu-

mulative evidence substantiates that ER stress indexes and initial
neurodegenerative changes exist already in depressive and posttrau-
matic stress disorders, well before the clinical onset of canonical
neurodegenerative diseases typical of advanced age [377-379].

3.3.5. Formation of a Receptor and Secretory Pro-inflammatory
Phenotype in CNS Cells in Stress and Depression

The emergence of a pro-inflammatory secretory and receptor
phenotype is a characteristic feature of CNS cells, including neu-
rons. Consequently, neurons participate in the formation of a cy-
tokine  network  during  instances  of  neurogenic  stress,  pain,  mi-
graine, neurodegenerative disorders, and mental illness [380-384].
Prolonged psychoemotional stress stimulates the production of pro-
inflammatory cytokines, particularly in the hippocampus and other
components of the limbic system, implicating them in the pathogen-
esis of psychotraumatic anxiety and depression [385].

Chronic exposure to elevated levels of inflammatory cytokines
and persistent changes in neurotransmitter systems can lead to neu-
ropsychiatric disorders, including depression. The mechanistic un-
derpinnings of these behavioral effects involve the activation of in-
flammatory  signaling  pathways,  leading  to  modifications  in  the
monoamine, glutamate, and neuropeptide systems and reductions
in growth factors such as brain-derived neurotrophic factor [386].
Furthermore, both acquired and congenital risk factors for depres-
sion can stably modulate the expression of inflammatory cytokines
within the CNS [386].

In their seminal review, Miller AH et al. (2009) showed that
the activation of inflammatory pathways diminishes neurotrophic
support and impairs glutamate reuptake mechanisms, thus inducing
oxidative  stress  and excitotoxicity.  These changes  are  consistent
with the neuropathological hallmarks of depressive disorders [387].

More evidence supports the connection between pro-inflamma-
tory stress and depression comes from studies showing that psycho-
social stress stimulates inflammatory signaling molecules, such as
NF-κB, in neurons [387]. A considerable body of animal literature
indicates  that  cytokine  administration  significantly  affects  sero-
tonin, norepinephrine, and dopamine metabolism [388, 389]. Spe-
cifically, pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α
activate indoleamine 2,3-dioxygenase (IDO), diverting tryptophan
metabolism away from serotonin and towards the kynurenine path-
ways, thus contributing to the molecular mechanisms underlying
depression [390].

Cytokines and their signaling pathways also influence the reup-
take  of  monoamines  at  synaptic  junctions.  Pathways  such  as
MARK (p38, ERK1/2), which mediate cytokine effects, have been
observed  to  increase  the  activity  of  serotonin,  DOPA,  and  nore-
pinephrine membrane transporters [387]. Furthermore, pro-inflam-
matory cytokines like IL-1β, IL-2, IL-6, and TNF-α are recognized
by neurons and induce various cellular responses, including pain
perception [391].

As indicated previously, imbalances in activation neurotrans-
mitters, particularly NMDA hyperfunction, can precipitate excito-
toxicity, neuronal damage, and dysfunction in conditions such as
MDD and Alzheimer's disease [392, 393]. These processes acceler-
ate with aging and chronic cerebral ischemia [394]. Hence, neuro-
transmitter actions typically involve a balance between activation
and inhibitory mechanisms, complemented by negative feedback
loops. These actions may activate pro-inflammatory stress signal-
ing pathways to mitigate harmful effects [395-397].

The formation of a cytokine network under conditions of dis-
tress and depression is intrinsically linked to the activation relation-
ships between neurons and glial cells, particularly microglia, resi-
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dent macrophages of the CNS. During periods of stress and depres-
sion, microglia activate the PI3K/AKT/NF-κB signaling pathway,
a characteristic feature of cellular stress [398]. Chronic stress also
induces the formation of DAMP such as HMGB1, as well as extra-
cellular nucleosomes and histones, capable of activating microglia
in affected CNS structures [399].

Microglia activation is markedly enhanced in suicidal individu-
als (based on autopsy data) and patients with depression, as well as
in animal models of depression. This activation is associated with a
shift towards a pro-inflammatory M1 phenotype, increased NLRP3
inflammasome formation, and increased production of pro-inflam-
matory cytokines like IL-1β, IL-6, IL-8, IL-12, and TNF-α [400].
Interestingly, TNF-α is produced by various types of CNS cells, in-
cluding neurons, astrocytes, microglia, and endothelial cells [401].
However, M1 microglia are the predominant targets of TNF-α in
neuroinflammatory processes, including MDD [401, 402]. In these
contexts, TNF-α may promote neuronal death by activating the ex-
trinsic  pathway of  apoptosis  (TNF-α/TNFR1/caspase-8)  or  more
pro-inflammatory mechanisms such as pyroptosis (TNF-α/NF-κB/
NLRP3) [400, 401].

Tissue stress in the CNS can be propagated by microglial cells
and astrocytes through extracellular vesicles containing non-coding
stress RNAs [403]. The key role of microglia in the pathogenesis
of neuroinflammation in progressive neurodegeneration is incontro-
vertible [404-408].

A  study  by  Guo  et  al.  demonstrated  that  chronic  five-week
stress in experimental mice can induce not only a pro-inflammato-
ry response but also a compensatory anti-inflammatory response in
the  hippocampus  [409].  This  combined  response  was  associated
with microglial apoptosis, reduced microglial cell numbers, and de-
creased production of pro-inflammatory cytokines in the hippocam-
pus of chronically stressed mice. However, a prevailing trend ob-
served in most experimental models of depression and clinical ob-
servations in humans involves pro-inflammatory activation and in-
creased numbers of microglial cells in various brain regions, includ-
ing the limbic system (hippocampus, amygdala, among others) and
the frontal cortex [387, 399, 400, 410-412].

Notably, the activation relationship between microglia and neu-
rons in depression is bidirectional. Microglia and pro-inflammatory
astrocytes significantly influence multiple aspects of neuronal func-
tion and dysfunction. Similarly, stressor-affected neurons influence
microglial  functions  and  dysfunctions  primarily  through  soluble
factors such as chemokines, cytokines, and neurotransmitters.

It is worth emphasizing that cytokines and other inflammatory
mediators in neurons and glial cells activate the same pro-inflam-
matory  signaling  pathways  as  neurotransmitters  acting  through
GPCR and RTK, including PI3K/AKT [413], various NF-κB path-
ways [414] and p53 [415], as well as MAPK-ERK [416] and MAP-
K-p38, among others [417-420]. However, pro-inflammatory medi-
ators elevate the activation of these mechanisms to a new qualita-
tive level of cellular signaling (CS). Moreover, pro-inflammatory
cytokines  can  stimulate  more  CS-specific  signaling  pathways  in
neurons and glial cells, particularly those related to the non-recep-
tor tyrosine kinases JAK and a broad spectrum of associated down-
stream  pathways,  including  JAK/STAT  and  JAK/MAPK/NF-κB
[421-423].

From this perspective, the connection between NMDA and the
JAK/STAT pathway seems to be a natural phenomenon, as is the
role of this connection in the pathogenesis of depression, neuroin-
flammation and neurodegenerative diseases [421, 424-427].

However, it is important to consider that not all cases of stress
and depression necessarily involve neuroinflammation, especially

in the absence of morphological signs of this process. The adaptive
role of pro-inflammatory cellular and tissue stress in the develop-
ment  of  extreme  physiological  processes  should  also  be  consid-
ered.  Therefore,  the concept of pro-inflammatory tissue stress in
the CNS should be broadly interpreted to include not only neuroin-
flammation, but also borderline states and adaptive extreme physio-
logical processes, not to mention the presence of a pro-inflammato-
ry  tone that  maintains  tissue  homeostasis.  It  is  also  important  to
note that cytokine production, unlike neurotransmitters, occurs ex-
ponentially in the area of tissue damage; therefore, the specific con-
tribution of specialized inflammatory mediators in the development
of progressive tissue stress and neuroinflammation will assume a
dominant role at a certain stage.

3.3.6. The Role of Acquired Immunity Mechanisms in Stress and
Depression

Adaptive immunity, characterized by the specialized functions
of  T  lymphocytes  and  myeloid  antigen-presenting  cells  (APCs),
such as dendritic cells and inflammatory macrophages, plays a nu-
anced role in the context of chronic low-grade neuroinflammation,
compared  to  its  function  in  classical  inflammation.  Although  its
role is conventionally considered less significant than that of innate
immunity, emerging evidence suggests that subsets of adaptive im-
mune cells actively participate in neural-immune interactions dur-
ing neurodegenerative and neuropsychiatric conditions, including
stress and depression [428, 429].

Normally, certain subpopulations of T lymphocytes can cross
the  blood-brain  barrier  (BBB)  through  parenchymal  and  lepto-
meningeal blood vessels, as well as through the choroid plexus, as
part of immune surveillance [428]. During periods of neuroinflam-
mation and neurodegeneration, the permeability of the BBB to th-
ese immune cells is notably increased [429]. Studies in experimen-
tal animal models and postmortem human brains have shown that
effector and regulatory CD4+  and CD8+  T cells that infiltrate the
CNS are typically found in proximity to blood vessels or near me-
lanized dopamine neurons, particularly in the substantia nigra, a re-
gion commonly affected in Parkinson's disease [430].

Regulation CD4+ T cells (Tregs), which are known for their im-
munosuppressive functions, have been reported to play a protective
role in depression by suppressing chronic inflammatory responses
[431]. In contrast, in a mouse model of chronic stress, migration of
monocytes through a compromised BBB into the hippocampus was
observed to exacerbate depressive behavior [432].

Thus, the role of acquired immune mechanisms in neuroinflam-
mation related to stress and depression is complex and not yet fully
elucidated.  Migration  of  canonical  immunocytes  to  the  CNS ap-
pears to have both neuroprotective and neurodegenerative effects,
depending on the context. For example, while Tregs can act to dam-
pen inflammation and protect neuronal integrity, monocytes can po-
tentially exacerbate depressive symptoms by increasing inflamma-
tion [431, 432].

Further comprehensive research is required to understand the
multifaceted  role  of  adaptive  immunity  in  the  pathogenesis  of
stress and depression. Given that immune cells such as T lympho-
cytes can interact with various types of CNS cells, including neu-
rons, astrocytes, and microglia, a detailed mechanistic understand-
ing is crucial for the development of targeted therapies.  Further-
more,  considering  that  stress  and  depression  are  associated  with
neuroinflammation and disruptions in neurotransmitter systems, it
is imperative to understand how adaptive immune cells modulate
these processes [387, 390, 401].
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Fig. (4). The relationship of stress, depression, systemic, and low-grade inflammation. (A higher resolution/colour version of this figure is
available in the electronic copy of the article).

In summary, the involvement of adaptive immunity in stress
and depression is an evolving field of study that warrants further in-
-depth  investigation  to  unravel  its  complexities  and implications
for therapeutic interventions.

3.3.7. Systemic Inflammatory Response in Stress and Depression

Stress  and  depression  are  not  merely  localized  phenomena
within the CNS, but exert systemic effects that permeate various
bodily tissues. Several key mechanisms underline the complex rela-
tionship  between  stress,  depression,  and  systemic  inflammation
(Fig. 4).

Neuroendocrine Dysregulation: Dysfunctions in the HPA
axis and the aldosterone-renin-angiotensin system manifest
themselves either as hyperproduction of stress hormones
or functional deficiency of cortisol due to adrenal atrophy.
Furthermore, there is hypertonicity in the sympathoadrenal
system and dysfunction in the parasympathetic nervous sys-
tem [433-439].
 
Gastrointestinal Dysbiosis:  Disturbances in the intestinal
microbiome and barrier function facilitate feedback mech-
anisms between microbial pathogen-associated molecular
patterns (PAMP) and various intestinal neurotoxins affect-
ing  the  CNS,  thus  creating  a  detrimental  feedback  loop
[440-443].
 
Immunotropic Complications: Stress-induced systemic im-
mune dysfunctions contribute to a range of complications
including infectious, autoimmune, allergic, and tumorous
diseases [444-449].
 
Metabolic Allostasis: Stress and depression can accelerate
tissue  aging  and  cause  metabolic  dysfunctions  through
mechanisms of low-grade systemic inflammation, upregu-
lated  damage-associated  molecular  patterns  (DAMPs),
aberrant metabolites, and disproportionate immunomodula-
tory effects of extracellular vesicles [450-455].

Psychosomatic Disorders: The emergence and progression of
psychosomatic disorders further complicate the systemic nature of
distress and depression [456-459].

Proinflammatory Mediator Accumulation: The systemic inflam-
matory response itself is associated with increased levels of pro-in-
flammatory cytokines, acute phase proteins, and other inflammato-
ry mediators in the blood [387, 460-465].

The CNS contributes to these systemic effects through abnor-
mal neuroendocrine regulation of homeostatic processes, including
the disruption of gastrointestinal barrier functions. On the contrary,
low-grade  systemic  inflammation  -  along  with  the  presence  of
DAMPs, PAMPs, and toxic metabolites - impacts the CNS through
afferent  autonomic pathways,  creating a  vicious  cycle  of  pro-in-
flammatory cascades within stressed brain structures.

Complementing these issues is  the compromised integrity of
the blood-brain barrier (BBB), which serves as an aggravating fac-
tor in the stabilization and progression of distress-related complica-
tions [466-470].

Given this complex interplay, it is not surprising that distress
and  depression  are  frequently  comorbid  with  clinical  manifesta-
tions linked to chronic low-grade systemic inflammation, such as
morbid obesity, insulin resistance, nonalcoholic fatty liver disease,
hypertension, rapidly progressive atherosclerosis, sarcopenia, and
aging [471-499].

Thus, an interdisciplinary approach to understanding the multi-
layered relationship between systemic inflammation, distress, and
depression is paramount for the development of targeted therapies
and interventions.

4.  PRO-INFLAMMATORY  FUNCTIONS  OF  GPCR  AND
SPECIALIZED  FUNCTIONS  OF  5-HT  RECEPTORS  IN
THE  CNS

4.1. Involvement of GPCRs and their Ligands in Inflammation
and Immunity

G protein-coupled receptors (GPCRs), the most extensive fami-
ly of membrane proteins, play a crucial role in enabling the ner-
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vous system to respond well to both external stimuli and internal
states. However, this adaptability comes at the cost of fluctuations
in  cellular  ionic  composition  and  other  homeostatic  parameters
within the CNS. Such perturbations carry the risk of cellular dys-
function and damage. This risk is evidenced by the intersecting sig-
naling pathways that involve neurotransmitters and specialized CS
signaling cascades, such as MAPK, NF-κB, Protein Kinase B (AK-
T), PKC and p53.

Cytokines  and other  specialized inflammatory  mediators,  al-
though primarily associated with inflammation, are involved in low
concentrations in a wide range of physiological processes, includ-
ing metabolism, cell turnover, tissue growth, and cell differentia-
tion.  Intriguingly,  as previously discussed,  pro-inflammatory cy-
tokines also play a role in maintaining the normal function of neu-
rons.

The functional duality of GPCRs extends beyond their role in
neurotransmitter signaling. This assertion is confirmed by the data
in Table S1, which  succinctly  illustrate  the  immunotropic  and
pro-inflammatory roles of GPCRs mediated by specific types of G
proteins. The ligands that bond to these GPCRs are not limited to
well-known  pro-inflammatory  mediators  such  as  chemokines,
purines,  bradykinin,  histamine,  eicosanoids,  thrombin,  C5a,  and
platelet-activating factor (PAF). They also include most classical
neurotransmitters and hormones, as well as various other homeo-
static factors. In particular, nearly all of these ligands, along with
the  GPCRs  to  which  they  bind,  possess  some  degree  of  im-
munotropic activity, acting as regulators within the cellular signal-
ing CS framework.

This expansive role of GPCRs and their ligands implies that un-
derstanding  their  function  requires  an  interdisciplinary  approach
that integrates insights from immunology, neurobiology, and cell
signaling.  Their  multifaceted  roles  in  both  normal  physiological
processes and pathological conditions make them promising targets
for therapeutic interventions, although they have the complexity of
potentially pleiotropic effects (Table S1).

It would be a mistake to equate “professional” and non-special-
ized participants in immune response and inflammation, at both cel-
lular  and molecular  levels.  Specialized  pro-inflammatory  factors
show  an  exponential  increase  in  their  concentration  during  the
course of inflammation, along with a corresponding increase in the
expression of their inducible receptors. The signaling pathways of
these  specialized  factors  are  primarily  geared  toward  promoting
pro-inflammatory  tissue  stress  and fostering  cellular  interactions
among various immunocytes.

On the contrary, non-specialized signaling CS regulators pri-
marily aim to maintain homeostasis and execute specialized physio-
logical  cellular  functions.  It  is  also  erroneous  to  posit  that
metabotropic GPCR of neurotransmitters serve as more potent in-
ducers of CS in various cells compared to ionotropic receptors. For
example, ionotropic 5-HT3 receptors can exert substantial pro-in-
flammatory activity [500-502], while the cholinergic system modu-
lates mobilization, differentiation, secretion, and antigen presenta-
tion in adaptive and innate immunity cells, predominantly through
ionotropic α7-nicotinic receptors (α7nAChR) [503].

4.2. The Role of the Serotonergic System in the Pathogenesis of
Neuropsychiatric Disorders

Dysfunction in the serotonergic system has been implicated in
the pathogenesis of various neurological and psychiatric disorders,

notably including depression [504]. Conditions that are amenable
to pharmacological intervention targeting 5-HT and its receptors en-
compass MDD, schizophrenia, generalized anxiety disorder, obses-
sive-compulsive  disorder,  premenstrual  dysphoric  disorder,  mi-
graine, and Dravet syndrome [505].

Treatment modalities for depression and anxiety disorders fre-
quently utilize 5-HT reuptake inhibitors in synaptic junctions. Re-
cent advances have also included the deployment of selective agon-
ists and antagonists for specific subtypes of 5-HT receptors, includ-
ing 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3, 5-HT4, 5-HT6,
and 5-HT7 receptors [499, 506].

However, the efficacy of these therapeutic approaches is limit-
ed, to some extent, by inherent complexity and internal inconsisten-
cies  within  the  serotonergic  system.  This  complexity  is  evident
even in a cursory overview of the functional functions and patholo-
gies associated with various 5-HT receptors (Table S2).

The complexity of the pharmacological modulation of the sero-
tonergic system can be attributed to several key factors.

The 5-HT autoreceptors, as described in Table S2, are not
only localized on the postsynaptic membrane, but also on
the  presynaptic  membrane,  where  they  act  as  a  negative
feedback loop after activation of the postsynaptic 5-HT re-
ceptors.
 
Serotonin receptors can form heterocomplexes with other
receptor types, thereby gaining new functionalities. For ex-
ample, these heterocomplexes can include D2R-5-HT2A,
D2R-5-HT1A,  GalR1-GalR2-5-HT1A,  FGFR1-5-HT1A,
5-HT1A-FGFR1-mAChR1.3,  5-HT2A-OXTR,  and  5-
HT2C-OXTR  [500].  Additional  complexes  involving  5-
HT1A are delineated in Table S2.
 
A single 5-HT receptor can interact with multiple Gα subu-
nits,  some  of  which  may  have  divergent  functionalities
(Table S2).
 
Mutual activation can occur between 5-HT receptors and
certain RTK, such as the epidermal growth factor receptor
(EGFR).
The impacts of individual 5-HT receptors can vary signifi-
cantly depending on their location, either within different
brain structures or between the CNS and peripheral tissues.
 
Receptor functions often exhibit functional complementari-
ty while also displaying redundancy in their most salient
features, thus rendering them resilient to external perturba-
tions.
 
Receptor functions can be profoundly influenced by vari-
ous  pro-inflammatory  factors,  particularly  under  condi-
tions of tissue stress and neuroinflammation, as commonly
observed in chronic mental stress and depression.
 
Serotonin  levels,  strongly  implicated  in  depression,  are
prone to decline under conditions of elevated circulating
and  intracerebral  pro-inflammatory  cytokines,  and  de-
creased levels of tryptophan precursors due to cytokine-in-
duced activation of the kynurenine pathway for tryptophan
degradation in both the liver and CNS [507-510].
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Fig. (5). Role of Pro-Inflammatory Stress in Chronic Mental Conditions. Chronic mental stress and depression are seamlessly integrated into
the overarching framework of typical pathological processes. This integration is facilitated by the central role of pro-inflammatory tissue
stress and cellular stress, which serve as fundamental functional units underlying various pathological processes of various etiologies. (A
higher resolution/colour version of this figure is available in the electronic copy of the article).

Given  these  last  two  points,  the  utility  of  anti-inflammatory
medications as adjunctive therapy for depression has gained atten-
tion. Meta-analysis of clinical trials indicates that anti-inflammato-
ry treatments can ameliorate depressive symptoms and increase re-
mission rates [511]. However, making definitive recommendations
remains premature due to heterogeneity in study designs, patient
populations, treatment protocols, and outcome measures, coupled
with limited scientific rigor [512]. Furthermore, effective treatment
of depression cannot be limited only to pharmacotherapy, but also
requires psychotherapy and social rehabilitation to mitigate chronic
patterns of aberrant psychogenic excitability in the CNS, linked to
excitotoxicity, pro-inflammatory tissue stress, and neuroinflamma-
tion.

Furthermore, 5-HT affects numerous parameters of CS, includ-
ing mitochondrial responses [513]. Serotonin is also evolutionarily
related to the induction of HSP production [514] and controls the
onset of oxidative stress in various cell types [515, 516].

In  conclusion,  pro-inflammatory  mechanisms  exert  systemic
control over serotonergic effects, and serotonin reciprocally influ-
ences cellular stress. The intricate balance, crucial for normal neu-
ronal function, becomes disrupted under conditions of chronic psy-
choemotional stress and depression.

CONCLUSION

The emerging insights into the molecular underpinnings of vari-
ous diseases challenge the conventional dichotomy between somat-
ic and mental illnesses. A potential unifying element in these dis-
eases could be cellular and tissue stress. This encompasses univer-
sal mechanisms like oxidative stress, stress kinases, and inducible
transcription factors, which are integral not only to normal physio-
logical processes but also to para-inflammatory processes in tumor
growth, and both canonical and non-classical inflammation. This
understanding invites a reevaluation of the pathogenesis of depres-
sion  and  psycho-emotionally  linked  diseases  from  the  vantage
point  of  general  pathology.

Contemporary theories on depression primarily concentrate on
neurotransmitter  imbalances,  hormonal  fluctuations,  and  trophic
and morphological neuronal changes. However, the absence of a
central pathogenetic “core” or system-forming factor in these mod-
els may limit their capacity to fully encapsulate the complex patho-
genesis of such conditions. Our proposed neuroimmunoinflammato-
ry  concept  of  depression  and  stress-related  disorders  seeks  to
amalgamate these diverse theories into a cohesive framework, ex-
tending to the general molecular mechanisms at the cellular level
that underpin both mental and somatic diseases.

The  Neuroimmunoinflammatory  Stress  Model  (NIIS  Model)
posits that pro-inflammatory signaling pathways, in concert with
neurotransmitter systems—particularly those involving G-protein-
s—constitute an integrated regulatory network active even under
normal physiological conditions [517]. Specifically, 5-HT recep-
tors associated with G-proteins play a pivotal  role in initiating a
range of cellular stress responses. These responses are fundamental
to the functioning of various neuron types across both normal and
pathological states. Chronic mental stress disrupts this balance, cul-
minating in a state of distress that serves as the pathogenic founda-
tion for a variety of neuropsychiatric and psychosomatic disorders,
with  depression  being  especially  prominent  [518].  The  model  is
characterized by aberrant excitatory and inhibitory neural activity
in specific brain regions, resulting in excitotoxicity and enduring
shifts in homeostasis [519]. One salient consequence of such allos-
tasis is pro-inflammatory tissue stress. If these compensatory mech-
anisms  are  inadequate,  an  imbalance  between  neurotransmitters
and inflammatory mediators ensues [518, 519]. This prolonged tis-
sue stress ultimately leads to brain atrophy, potentially indicative
of low-grade neuroinflammation [517-519].

In contrast to extant models like the Monoamine Hypothesis or
the Neuroendocrine Model, which primarily concentrate on neuro-
transmitter  imbalances  or  hormonal  alterations  respectively,  our
NIIS Model integrates these aspects to provide a holistic unders-
tanding  of  the  pathophysiology  [335-344].  By  underscoring  the
roles of G-proteins and serotonin receptors, this framework intro-
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duces new perspectives into the convergent mechanisms underly-
ing  both  neuroinflammation  and  depressive  disorders  [335,  340,
341].

This  multi-faceted  approach sets  the  NIIS Model  apart  from
other prevailing models and enriches the scholarly discourse sur-
rounding the pathology of stress-induced disorders [343, 344]. Fur-
thermore,  the  comprehensive  nature  of  our  model  offers  the
prospect of developing more precisely targeted therapeutic interven-
tions for both neuroinflammatory and neuropsychiatric conditions
[344] (Fig. 5).

As mentioned above, our study does not strictly adhere to the
format of a systematic review. Rather, it integrates a wide array of
systematic  reviews  that  focus  on  more  specific  aspects  of  the
problem at hand. In the context of the neuroimmune-inflammatory
concept of stress and depression, our work meticulously examines
the roles of 5-HT receptors, other GPCRs, and G proteins. Our ear-
lier publication delved deeper into the role of cytokine-dependent
mechanisms, especially the JAK-STAT signaling pathways, in the
pathogenesis  of  depression  and  other  outcomes  of  pathological
stress [421].

Moreover, our conceptual syntheses are in line with other re-
searchers' findings regarding the role of pro-inflammatory mech-
anisms in the pathogenesis of classical mental illnesses, particular-
ly schizophrenia [388, 520, 521]. This broader viewpoint facilitates
the  interpretation  of  the  neuroimmune-inflammatory  concept
across  a  more  extensive  range  of  neuropsychiatric  disorders.

Additionally, we acknowledge that transforming the NIIS Mod-
el into a comprehensive theory requires resolving many challenges.
Notably, there is compelling evidence highlighting the involvement
of classical hormones and neurotransmitters in the regulation of im-
mune and pro-inflammatory processes. There are also studies focus-
ing on classical inflammation and immunity mediators as quasi-neu-
rotransmitters [421, 518, 522, 523]. However, this area of neuro-
physiology and neuropathology, in our opinion, demands more rig-
orous molecular research and syntheses.

From a practical standpoint, the NIIS Model emphasizes the po-
tential effectiveness of using immunomodulatory and anti-inflam-
matory treatments in managing stress-associated neuropsychiatric
diseases, taking into account their side effects on physiological pro-
cesses in the brain and other areas.

LIST OF ABBREVIATIONS

AC = Adenylate Cyclase

ADAM = A Disintegrin and Metalloproteinase

PKB = Protein Kinase B

AR = Adenosine Receptor

ASK = Apoptosis Signal-regulating Kinase

ATM = Ataxia-telangiectasia Mutated

BBB = Blood-brain Barrier

CaM = Calmodulin

CaMK = Calmodulin-dependent Protein Kinases

cAMP = Cyclic Adenosine Monophosphate

CaN = Calcineurin

Cdk = Cyclin-dependent Kinase

cGMP = Cyclic Guanosine Monophosphate

CNS = Central Nervous System

COX-2 = Cyclooxygenase 2

CS = Cellular Pro-inflammatory Stress

DAG = Diacylglycerol

DAMP = Damage-associated Molecular Pattern

DDR = DNA Damage Response

EGF = Epidermal Growth Factor

ER = Endoplasmic Reticulum

ERK = Extracellular Signal-regulated Kinases

FOXO = Forkhead Box Protein O1

GC = Guanelate Cyclase

GDP = Guanosine Diphosphate

Glu = Glutamic Acid

GPCRs = G Protein-coupled Receptors

GTP = Guanosine Triphosphate

HMGB1 = High-mobility group Protein B1

HSP = Heat Shock Protein

5-HT = 5-hydroxytryptamine (serotonin)

IDO = Indoleamine 2,3-deoxygenase

IKKα = Inhibitor of Nuclear Factor Kappa-B kinase Subunit
Alpha

IL = Interleukin

IP3 = Inositol 3-phosphate

JAK = Janus Kinase

JNK = c-Jun N-terminal Kinases

MAPK = Mitogen-activated Protein Kinases

MDD = Major Depressive Disorder

MHC-I = Major Histocompatibility Complex Class I

MMP = Matrix Metalloproteases

mTOR = Mechanistic Target of Rapamycin

NADPH = Nicotinamide Adenine Dinucleotide Phosphate

NF-κB = Nuclear Factor Kappa-light-chain-enhancer of Acti-
vated B Cells

NLRP3 = Nod-like Receptor Protein 3

NMDA = N-methyl-D-aspartate

NO = Nitric Oxide

NOS = NO Synthase

NRF2 = Nuclear Factor Erythroid 2-related Factor 2

PAF = platelet-activating Factor

PAMP = Pathogen-associated Molecular Pattern

PDE = Cyclic Nucleotide Phosphodiesterases

PGE2 = Prostaglandin E2

PKA = Protein Kinase A
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PKC = protein Kinase C

PKG = Protein Kinase G

PLC = Phospholipase C

PR = Purine Receptor

PRR = Pattern Recognition Receptor

ROS = Reactive Oxygen Species

RTK = Receptor Tyrosine Kinases

STAT = Signal Transducer and Activator of Transcription

TACE = TNF-α Converting Enzyme

TNF-α = Tumor Necrosis Factor Alpha

Treg = T Regulatory Cells

UPR = Unfolded Protein Response

VSMC = Vascular Smooth Muscle Cells
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Fig. (S1). The Role of GPCR Receptors in Cellular Stress Development. Technical term abbreviations are explained in their first usage. 

The GPCR receptor is associated with the trimeric (αβγ) G protein (G). Upon attachment of the ligand to the GPCR, the G α-subunit undergoes the 
replacement of GDP by GTP, leading to its dissociation from the G αβγ trimer and activation of the released G α. G protein signaling is disrupted 
by internal phasic Gα activity, which hydrolyzes GTP to GDP. This is followed by the reassociation of Gα with Gβγ and subsequent inactivation of 
the G protein. GTP is then dephosphorylated and converted to GDP, leading to inactivation of the Gα subunit that reattaches to the G-protein di-
mer-βγ. The Gαβγ trimer is formed, leading to the inactivation of the G protein. The G-proteins are separated into four families based on the α-
subunit composition. 
Gs stimulates adenylate cyclase to produce cyclic AMP (cAMP) from ATP. In addition, PKA is activated by cAMP, which can phosphorylate many 
downstream targets. On the contrary, Gi inhibits the formation of adenylate cyclase and cAMP, while activating several cation channels. Gq pri-
marily stimulates calcium mobilization by activating PLC and forming inositol-3-phosphate (IP3) and diacylglycerol (DAG). 
G12/13. All G proteins can activate small GTPases, predominantly G 12/13 and Gq. Once activated, GPCRs mediate their neurotropic and pro-
inflammatory effects through various types of G proteins through the following principal signaling pathways:  
(1) Activation of Phospholipase C (PLC) occurs mainly through the α-subunit Gq/11 (Gq greater than G11) and to some extent through the dimers 
of βγ G proteins. Active PLC catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating inositol 1,4,5-triphosphate (IP3) and 
diacylglycerol (DAG). Subsequently, IP3 induces calcium (Ca2+) release from the endoplasmic reticulum and, together with DAG, activates protein 
kinase C (PKC). PKC then triggers various stress pathways, such as PKC / MEK / ERK, PKC / Sc / MAPK (ERK, JNK, p38)/NF-κB, as well as PKC 
/ Sc / PPI3K / AKT. At the same time, calcium ions in the cytoplasm can activate numerous signaling pathways through CaMK.  
(2) The regulatory effects of numerous GPCRs are largely determined by the PI3K Trunk and Fork track. Upstream, activation of various PI3K 
isoforms can be associated with Gα/PKC, Gα/small GTPases, and Gβγ. Downstream, most of the key mechanisms of GPCR are associated with 
PI3K signaling pathways. Specifically, PI3K can initiate several essential pathways for cell stress. The PI3K/AKT signaling pathways play crucial 
roles in cellular processes such as cell cycle regulation, cell proliferation, and apoptosis. They also have significance in the activation of the im-
portant DNA factors, FOXO and p53, for the response to damage. Furthermore, PI3K and Ca2+ activate the cyclin-dependent kinase Cdk5, which 
is vital for neuron survival. Meanwhile, not only does Gq activate PI3K through PKC and small GTPases, it can also directly inhibit the catalytic 
subunit of PI3K through a negative feedback mechanism. 
(3) Adenylate cyclase is activated through Gs or inhibited through Gi/o, but more via Gi, which leads to the formation of cyclic adenosine mono-
phosphate (cAMP) and the subsequent activation of various protein kinase A (PKA) signaling pathways. The regulatory effects of PKA are markedly 
pleiotropic. However, in general, the effects of cAMP, according to multiple authors, are anti-inflammatory and relaxing toward neurons and myo-
cytes. However, due to its pronounced pleiotropy, the effects of cAMP on particular cellular stress signaling pathways remain ambiguous and con-
troversial. Therefore, we must determine the role of cAMP in the development of particular variants of cellular stress in neurons, as well as in the 
nervous tissue as a whole. 
(4) Activation by calcium, calmodulin (CaM), and CaM kinases has a multidirectional influence on NO production and cGMP formation. These 
versatile pleiotropic regulatory effects, similar to those of cAMP, generally affect the balance of neurotransmission and cellular stress mechanisms. 
(5) Furthermore, small GTPases activated on the G12/13 and Gq sides - primarily Ras, Rho, and Rab - activate multiple signaling pathways, includ-
ing through PI3K, ERK, and AKT (protein kinase B). 
(6) GPCRs can activate MAPR MAPK (ERK and JNK) through the recruitment of β-arrestin. It is important to note that this process is objective and 
free from subjective evaluations. Technical term abbreviations are explained when first used for clarity purposes. At the same time, β-arrestin facili-
tates desensitization and internalization of the GPCR via a negative feedback mechanism.  
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Table S1. Immunotropic and pro-inflammatory effects GPCR, with established types of Gα subunits. 

Ligands Receptors Gα Immunotropic Effects, Role in Inflammation 

5-HT (serotonin) 5-HT1 Gi, Go 
[1] 

5-HT1A: Enhances macrophage phagocytosis, increases B cell proliferation, 
increases NK cell cytotoxicity, and modulates mast cell responses [2-4]. 
5-HT1B: Promotes CD4+ T cell proliferation and mediates Ca2+ mobilization and 
chemotaxis in immature DC [2]. 
5-HT1E: Mediates Ca2+ mobilization and chemotaxis in immature DCs [2]. 
CD4+ T cells in multiple sclerosis: Show elevated 5-HT1A receptor expression 
[5]. 

5- HT2 Gq, G11 
[1] 

5-HT2C: Enhances monocyte chemotaxis [2]. 
5-HT2A: Increases pro-inflammatory activity and migration of eosinophils [6]. 
5-HT2B: Expressed in monocytic-origin DCs; modulates the immune response 
[7]. 

5- HT4 Gs [1] 5-HT4: Expressed in DCs, monocytes, macrophages, and mast cells [8]. 

5-HT5A Gi, Go [1] 5-HT5A: Expressed in microglial cells [9]. 

5-HT6 Gs [1] 5-HT6: Expressed in eosinophils and mast cells [8]. 

5-HT7 Gs 
[ 1] 
 

5-HT7: Expressed in DCs, monocytes, macrophages (including microglia), T 
cells, and mast cells. Promotes T cell proliferation and naive T cell activation, 
enhances DC chemotaxis. A selective 5-HT7 agonist reduces macrophage 
inflammation by modulating cytokine production [8-10]. 

Adrenaline, 
norepinephrine 
 

β 1 - AR Gs , Gi 
[11] 

β1-AR: Increases pro-inflammatory cytokine production in LPS-activated 
monocytes through cAMP elevation; suppresses host defenses against Listeria 
monocytogenes [12,13]. 

β2 - AR Gs , Gi 
[11, 14] 

β2-AR: Reduces NF-κB in activated monocytes and macrophages; suppresses the 
secretion of inflammatory cytokines in response to LPS, and IFN-γ and TNF-α in 
CD8+ T cells. Enhances NK cell and Treg function; interferes with antibody 
production [15-18]. 

α 1 -AR Gq 
[19] 

α1-AR: Enhances monocyte migration, complement synthesis, and pro-
inflammatory cytokine production in LPS-activated monocytes; inhibits these 
functions in activated microglial cells. Increase neutrophilia and mast cell 
histamine release; inhibit T-cell proliferation. Enhances cytokine production in 
phagocytic cells [12, 16]. 

α2 - AR Gq , Gi/o 
 [20,21] 

α2-AR: Reduces IL-2 production; enhances Treg immunosuppressive function; 
inhibits phagocyte and NK cell activity; decreases the probability of neutrophil 
netosis [22]. 

Dopamine DR1 Gq, Gs  
[23,24] 

DR1: Regulates the development and function of bone marrow stem cells and is 
expressed in various immune cells. Mediates IL-6-dependent Th17 differentiation; 
contributes to M2 microglia differentiation; enhances NK cytotoxicity [24, 25]. 

DR2-4 Gi/o 
[20] 

DR3: Contributes to Th1 and Th17 mediated immunity [25]. 
DR2: Attenuates NK cytotoxicity [25]. 

Glutamate (via 
metabotropic 
mGluR) 

mGluR2 -4, mGluR 6-8 Gi/o [20] mGluR4c: Contributes to suppression of antitumor immunity by affecting NK and 
CD8+ T cells [26]. 

mGluR1, mGluR5 Gq 
[27] 

mGluR5: Involved in LPS-induced microglial activation, specifically increasing 
NF-κB expression [28]. 

γ-Aminobutyric acid 
(GABA) 

GABABR Gi/o [20, 29] GABABR: Enhances neutrophil chemotaxis to the inflammation site [30]. 

Acetylcholine mAChR2, mAChR 4 Gi/o 
[20] 

mAChR1 and mAChR5: Highly expressed on Th2 cells. 
mAChR4: Dominant on Th1 cells [31]. 
NK cells: Preferentially express mAChR1-3 [32]. mAChR 1, mAChR 3, 

mAChR 5 
Gq/11 
[19] 

Substance P NK1R Gs, Gq 
[33] 

Expressed on various immunocytes. 
Promotes autoreactive Th1 and Th17 cell formation, CNS migration. 
Activates leukocyte chemotaxis, T cell and monocyte proliferation, inflammation 
development [34]. 
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Ligands Receptors Gα Immunotropic Effects, Role in Inflammation 

The interaction of substances P-NK1R results in NF-κB activation, increased 
production of pro-inflammatory cytokines (IL-1, IL-6, TNF-α, MIP-1β, IFN-γ) 
[35]. 

Neurokinin 1 NK1R Gq [33, 36] Acts through the same receptor as substance P. 
Does not activate the Gs signaling pathway. 

Melanocortins: 
adrenocorticotropic 
hormone, melano-
cyte-stimulating 
hormones (α, β, γ) 

MC3R, MC4R Gs [37] Melanocortins (ACTH, α, β, γ-MSHs): 
Possess independent anti-inflammatory and immunomodulatory effects of gluco-
corticoids. 
Activate melanocortin receptors in the brain or immune cells. 
MC3R agonists have potential as new anti-inflammatory agents for chronic condi-
tions [38,39]. 

Neuropeptide Y YR1, YR3, YR5 Gi/o 
[40] 

Up-regulated YR expression in immune cells after antigen or inflammatory 
stimulation [41]. 
Multiple roles in immune cells: inhibition of activation (Y1R), regulation of 
cytokine proliferation, differentiation, secretion; Y1R/Y2R/Y5R mediating 
phagocytosis and leukocyte migration [41]. 
Y1R has bimodal effects on the immune system, showing both anti-inflammatory 
and specific pro-inflammatory properties. 

YR2, YR4 Gi/o, Gq 
[40] 

Endoopioids Opioid receptors-δ, κ, µ Gi/o [20, 21] Expressed by blood spleen cells, lymphocytes, and macrophages. 
Analgesic effect mediated by TLR4 signaling and leukocyte-dependent opioid 
peptide release [42]. 
Exogenous opioids induce immunosuppressive effects in vitro and in vivo 
immunosuppressive effects [43]. 

Endocannabinoids CB1 R , CB2 R Gi/o , Gq/11 
[20, 44] 

CB1R mainly on neurons, CB2R mainly on immune cells. 
CB2R activation leads to anti-inflammatory effects in various conditions. 
Including inflammatory pain, myocardial infarction, stroke, liver damage, gastro-
intestinal tract disorders, atherosclerosis [45]. 
Peripheral CB1R and CB2R agonists under testing for inflammatory diseases and 
cancer [46]. 

Corticotropin- r-
eleasing hormone  
(CRH)  

CRH1R, CRH2R Gq/11, Gs 
[47] 

Lymphocytes in inflammation: Produce and possess CRHR. 
CRH acts as autocrine and paracrine factor. 
Implicated in the activation of the Fas/FasL system. 
Human mast cells synthesize and secrete CRH, acting in autocrine and paracrine 
manners. 
Particularly relevant in allergic inflammatory diseases [48,49]. 

Gonadotropin-
releasing hormone 
(GRH) 

GnRHR Gq/11 
[19] 

Suppresses NO production and NF-κB expression in mouse macrophages [50]. 

Thyrotropin-
releasing hormone 
(TRH) 

TRHR Gq/11 
[19] 

TRH: 
In vivo data suggest both stimulatory and inhibitory interactions with the immune 
system [51]. 

Calcitonin CTR Gs , Gq, Gi 
[52,53] 

? 

Parathyroid hormone 
( PH) 

PTHR Gs , Gq, Gi/o 

G12/13 
[54] 

Expressed in neutrophils, B-cells, and T-cells. 
PH increases lymphocyte proliferation and IL-2 production. 
The impact on the immune response remains contradictory [55]. 

Follicle Stimulating 
hormone ( FSH) 

FSHR Gs , Gq, Gi 
[56] 

Potentially negatively regulates the immunosuppressive function of decidual 
mesenchymal stem cells. 
Reduces IL-6 secretion [57]. 

Melatonin MTR1/2 Gi/o 
[58] 

Stimulates progenitor cells of granulocytes-macrophages. 
Stimulates NK cells and CD4+ cells; inhibits CD8+ cells [59]. 
Potentially regulates immune system activation, reducing chronic and acute 
inflammation [60]. 

Somatostatin SSTR1-5 Gi/o Suppresses immune functions: lymphocyte proliferation, immunoglobulin 
production, and pro-inflammatory cytokine release (e.g., IFNγ). 
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[20] Effective in various in vivo models of chronic autoimmune diseases and 
inflammation when treated systemically or topically [61]. 

Oxytocin OXTR Gq/11 
[20] 

Blocking OXTR: 
Inhibits mouse thymic T cell differentiation. 
Increases inflammatory cytokine expression and secretion. 
Immunocytes can secrete oxytocin as a histohormone [62]. 

Vasopressin V2R Gs, Gi/o, Gq/11, 
G12/13 
[63] 

Activation of V2R in kidneys: 
Inhibits PRR-mediated NF-κB activation (TLR4). 
Reduces pro-inflammatory activity of innate immune cells [64]. 

Glucagon GCGR Gs, G i, G q 
[65,66] 

In vivo, causes suppression of cellular and humoral immune response [67-69]. 

Glucagon-like 
peptide 1 (GLP-1) 

GLP1-R Gs 
[70] 

Regulate innate immune cells, particularly macrophages. 
Activate human monocyte-derived macrophages toward M2 polarization [71]. 

Short-chain fatty 
acids (SCFAs) 

FFA2 Gi, Gq 
[72] 

May contribute to immune homeostasis, tissue integrity, and pathogen responses. 
Widely expressed by immune cells in mice. 
Implicated in inflammatory tissue processes linked to metabolic disorders [73]. 

Vasoactive 
interstitial peptide 

VIPR1 Gs 
[74] 

Generated by T cells, promotes Th2 development, inhibits Th1 differentiation. 
VPAC1 constitutively expressed in lymphocytes, macrophages, monocytes, DCs, 
microglia, mast cells. 
VPAC2 induced upon stimulation, particularly in T cells [76]. VIPR2 Gs, Gi, Gq 

[75] 

Adhesion molecules 
(ADGRL) 

ADGRs _ Gi, Gq, G12/13 
[77] 

Participate in cell-cell and cell-extracellular matrix interactions. 
Critical in nervous system development, embryogenesis, immune response, 
endocrine functions, and tumorigenesis [78]. 

C5a complement C5aR Gi, G16 
[79] 

Expressed on various immunocytes: mast cells, phagocytes, platelets, endothelial 
cells, lymphocytes. 
Complement anaphylatoxin C5a action on C5aR initiates multiple pro-
inflammatory effects. 

 
Prostaglandin E 2 

(PGE 2 ) 

EP1R Gq 
[80] 

Most commonly expressed in neurons, not in astrocytes or microglia. 
EP1R inhibition after brain damage in mice improved cerebral edema, neuronal 
degeneration, neuroinflammation, and neurobehavioral problems. 
EP1R activation worsened these outcomes. 

EP 2R Gs 
[80] 

Expressed on T cells. 
Activation of EP2R inhibits cellular immune response [81]. 

EP 3R Gq, Gi 
[80] 

Key receptor inducing fever during inflammation [82]. 

EP4R _ Gs, Gi 
[80] 

Modulates macrophage function through EP4R activation. 
Inhibits cytokine release and antigen presenting function in macrophages [81]. 

 
Histamine 

HR1 Gq Expressed in various cell types: neurons, endothelial cells, adrenal medulla, 
muscle cells, hepatocytes, chondrocytes, monocytes, neutrophils, eosinophils, 
DCs, T cells, and B cells. 
H1R signaling results in: prostacyclin synthesis, platelet factor activation, NO and 
eicosanoid synthesis, smooth muscle cell contraction. 
Activation of H1R increases eosinophil and neutrophil chemotaxis, enhances 
antigen-presenting cell function, activates Th1 lymphocytes, reduces humoral 
immunity, and stimulates IgE production [83]. 

HR2 Gs 
[84] 

Expressed in muscle, epithelial, endothelial, neuronal, hepatocyte, and immune 
cells. 
Counteracts some H1Rs, causing vasodilation through GMCC relaxation. 
Functions as a suppressor molecule in DC by increasing IL-10 production. 
Induces inhibition of leukotriene synthesis in human neutrophils through cAMP 
signaling [85]. 

HR3-4 _ Gi/o Inhibits acetylcholine release in cerebral cortex. 
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[83] Controls neurogenic inflammation by inhibiting cAMP formation and Ca2+ 
accumulation [85, 86]. 
HR3-4 Activation: Induces chemotaxis in mast cells and eosinophils, 
accumulating inflammatory cells. 
H4R:Involved in increased IL-31 secretion by Th2 cells. 

Bradykinin B1R _ _ Gq, Gi 
[87,88] 

B1R: 
Minimal expression in healthy tissues. 
Expression induced under special conditions like injury and inflammation [89]. 
B1R Agonists: Increase pro-inflammatory cytokine and adhesion molecule 
secretion on brain microvessel endotheliocytes. 
Reduce occludin expression in tight junctions, with no change in VE-cadherin 
expression [90]. 

B2R Gq/11, Gi 
[87, 91, 92] 

Ubiquitously expressed, mediates vasodilation. 
Expression elevated in tissue damage pathologies due to oxidative stress and pro-
inflammatory stimuli [89]. 

Thrombin PAR1 Gq, G12/13 
[93] 

Predominantly expressed on the microvascular endothelium and platelets. 
Critical for the coactivation of coagulation and inflammatory responses [94]. 

Thromboxane 
(TxA2) 

TxA 2R _ Gq, G12/13 
[95, 96] 

Priority activation: thrombosis/hemostasis and microvessel inflammatory 
responses. 
Expressed in microglia, capable of pro-inflammatory activation [95]. 

Prostacyclin ( PGI 2 ) IP Gs 
[96] 

IP Receptor for PGI2: Found on various cell types. 
Signaling leads to diverse physiological effects. 
PGI2 inhibits platelet aggregation, induces vasodilation through smooth muscle 
relaxation, and affects inflammatory responses through increased cAMP levels 
[97]. 

Platelet activation 
factor (PAF) 

PAFR Gq/11, Gi/o 
[98] 

Expressed by vascular and innate immune cells. 
Activates pathways related to inflammation, oncogenic transformation, tumor 
growth, angiogenesis, and metastasis. 
Participated in various physiological processes. 
Possible role in neuroinflammation development [99]. 

Angiotensin II A G T1R Gi/o, Gq/11, 
G12/13 
[20, 47] 

Promotes CS development through MAPK and NF-kB activation. 
Expression includes immunocytes [100, 101]. 

A G T2R Gi/o 
[102] 

Highly expressed in pulmonary fibroblasts. 
Their hyperfunction linked to pulmonary fibrosis [103]. 

Endothelins ETAR Gq/11 , Gi/o 
[104, 105] 

Main function: vasoconstriction. 
Also act as pro-inflammatory factors via ETAR [106,107]. 

ET B R Gs, Gi/o, Gq/11 
[104] 

ETBR Activation: Promotes activation of astrocytes. 
Induces the production of pro-inflammatory factors that cause BBB disruption 
[107]. 

ADP P2Y1R Gq/11 
[93, 108] 

Induces immunotropic and pro-inflammatory effects. 
Associated with Th17 activation in colitis [109]. 

ATP , UTP P2Y2R Gq /11, Gi/o, 
G12 
[108, 110] 

Involved in the development of inflammation, including glomerulonephritis [111] 
and alcoholic hepatitis [112]. 

UTP P2Y4R Gq /11, Gi/o 
[108,110] 

Participated in the positive feedback loop in HIV-1 neurotoxicity. 
Activates PI3K/AKT and ERK pathways [113]. 

UDP P2Y6R Gq/11 
[108] 

Expressed in immune cells, including microglia. 
Implicated in neurological disorders. 
Ligand UDP acts like DAMP in cell death signaling. 
Binding of UDP binding to P2Y6R activates distinct biochemical pathways based 
on the disease context [114]. 
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ATP P2Y11R Gq/11 , Gs 
[108] 

ATP Release and P2Y11 Activation: 
The inflammation process triggers massive ATP release. 
Activates purinergic receptors, including P2Y11. 
Recent data suggest a potential anti-inflammatory role: dendritic cell 
immunosuppression, inhibition of fibroblast proliferation, cytokine and ATP 
secretion [115]. 

ADP P2Y12R , P2Y13R _  Gi/o 
[20, 108] 

P2Y12R: Key role in platelet activation, targeted by antithrombotic drugs. Also 
present in immune cells and vascular smooth muscle cells, potentially involved in 
the inflammatory response [116]. 
P2Y13R: Possibly involved in various types of inflammation [117, 118]. 

UDP , UDP -glucose P2Y14 R Gi/o 
[108] 

Functions as a pro-inflammatory mediator. 
Inhibition may hold promise for the treatment of inflammation-related diseases 
[119]. 

 
Adenosine 

AR1 Gi/o 
[20, 21] 

Expressed in all immune cell types. 
Regulate immune and inflammatory responses, often with anti-inflammatory 
effects. 
AR1 promotes neutrophil chemotaxis, while AR2 inhibits neutrophil activation 
[120]. 

AR2 Gs [21] 

Leukotriene ( LT ) B 
4 ( LTB 4 ) 

LTB4R1 _ Gq/11, Gi/Go 
 [20] 

LTB4 is a pro-inflammatory eicosanoid. 
LTB4R1a expressed in various inflammatory and immune cells: granulocytes, 
eosinophils, macrophages, Th1, Th2, Th17 cells, CD8 T cells, DCs [121]. 

LTD4 and LTC4 _  > 
LTE 4 

CysLT 1 R Gq/11 , Gi/Go 
[122] 

Actively involved in exudative-vascular reactions. 
Strongly implicated in allergic processes, particularly. 
CysLT1R antagonists reduce pro-inflammatory activation of endotheliocytes 
[123, 124]. 

Formyl Peptides FPR1, FPR2 Gi/o 
[125, 126] 

FPR1: Recognizes PAMPs, expressed by various immunocytes. Transmits 
chemotactic signals, triggers adhesion, migration, ROS formation, tissue repair, 
and angiogenesis [127]. 
FPR2: Lower affinity for bacterial N-formyl peptides compared to FPR1. Binds a 
wide range of agonists.Can promote or suppress inflammation based on 
expressing cell type [128]. 

Lysophosphatidic 
acid (LPA) 

LPA R1-6 G α 12/13, G α 
q/11, G α i/o and 
G α S 
[129, 130] 

Glycophospholipid with diverse functions. 
Stimulates cell reproduction, cytoskeleton recombination, cell survival, DNA 
synthesis, and ion transport [130]. 

Sphingosine-1-
phosphate (S1P) 

S1P R1-5 Gi 
[129] 

Metabolic product of cell membrane sphingolipids. 
Secreted by erythrocytes, endothelial cells, and platelets. Binds to extracellular 
chaperones, acts through S1PRs on various cells. 
S1PRs interact with signaling pathways in embryonic development, inflammation, 
host defense, and homeostasis [131]. 

 
 
 
 
Chemokines 

CXCR 1-6 _ Gi/Go [20, 132-
134] 

Chemokine Receptor Specificity: 
Complex, with multiple chemokines binding to many receptors. 
Inflammation-related chemokines show greater complexity. 
Homeostatic chemokines have fewer ligands. 
Chemokines vary in affinity for specific receptors. 
Biased signaling or functional selectivity is a key feature. 
Activated pathways depend on ligand and cellular context [140-142]. 

CXCR4 Gq, G12/13 [135, 
136] 

CX3CR1 Gi/Go 
[133] 

CCR1-10 Gi/Go [133, 137, 
138] 

CCR2 Gq [138,139] 

 
Note: The dominant forms of G proteins are highlighted in bold. Table 1 does not show the large group of GPCRs of peripheral sensory 
neurons responsible for vision, taste and smell. In total, about 800 GPCRs are encoded in the human genome [143, 144]. 
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Table S2. Brief characteristics, function and pathology of 5-HT receptors 

Receptor 
(Gene) 

Cell Transduction 
Factors Localization Function Pathology Literature 

5-HT1A* 
(HTR1A) 

Gi, Go, 
PKC, PI 3, ERK, 

Src kinases , ↓ 
cAMP, modulate 

Ca 2+. 
All 5-HT receptors 
that activate Gi / o 
multidirectionally 

modulate the 
activity of Ca 2+ 

channels, open K + 

channels (via G βγ), 
which leads to 

hyperpolarization 
and decreased 
excitability of 

neurons. 

CNS: Predominantly 
localized in the neocortex, 
hippocampus, entorhinal 

cortex, olfactory bulb, 
raphe nuclei, septum, 

thalamus, interpeduncular 
nucleus, amygdala, and 

hypothalamic subnuclei, as 
well as in the dorsal and 

anterior horns of the spinal 
cord. Found on cholinergic 
neurons, and on cortical and 
hippocampal glutamatergic 

pyramidal neurons and 
granule cells. PNS: Also 

present in peripheral 
nervous system structures. 
Additional Localization: 
Detected in blood vessels 

and genital tissues. 

Regulates various physiological 
processes including blood pressure 
(via medulla oblongata centers and 
vagus nerve activation), memory, 

sociability, appetite, cognitive 
functions, mood, nociception, 

penile erection, mydriasis, 
respiration, sexual behavior, sleep, 
and thermoregulation. Enhances 
dopamine release in the medial 
prefrontal cortex, striatum, and 

hippocampus. Forms heterodimers 
with multiple receptors such as 5-
HT1B, 5-HT1D, 5-HT7, LPA R 
1/3, GABA R 2, and S1P R 1/3. 
Influences hormone secretion, 

including cortisol, ACTH, 
oxytocin, prolactin, and 

somatotropin. Downregulates 
NMDA R expression in synapses 

by inhibiting the cAMP/PKA 
pathway. 

Deficiency in receptor (R) is associ-
ated with conditions such as anxiety, 
autism, hyperphagia, nausea, vomit-
ing, and impulsivity. Overexpression 
of autoreceptors can lead to depres-
sive-like behavior, whereas activa-

tion of postsynaptic receptors exerts 
an antidepressant effect and prono-

ciceptive effects (notably in the 
dorsal horns of the spinal cord). 

Additionally, the receptor is impli-
cated in tissue regeneration process-
es, including liver and spinal cord 

motor neurons, as well as in wound 
healing. However, it may negatively 
impact certain memory and learning 
functions. Also plays a role in inhib-

iting the release of glutamate and 
acetylcholine in various brain re-

gions. 

[1-17] 

5-HT1B* 
(HTR1B) 

Gi, Go , 
β -arrestin/ERK, ↓ 

cAMP 
Ras-Raf/ERK , 

PI3K/AKT 

Is primarily localized 
presynaptically, 

predominantly at axon 
terminals. In terms of tissue 
distribution, it is present in 
blood vessels, the CNS—
including the cortex and 
basal ganglia—and the 

genitals. 

Serves diverse physiological 
functions including learning, 
movement, memory, mood 

regulation, penile erection, sexual 
behavior, and pain management. 

Additionally, it contributes to 
vasoconstriction through its actions 
in the central nervous system and 

vascular endothelium. 
Mechanistically, presynaptic 
inhibitory autoreceptors are 

situated at axon terminals, while 
activation receptors are localized 
on the postsynaptic membrane. 

Is implicated in various psychiatric 
and behavioral conditions such as 

addiction, anxiety, depression, 
schizophrenia, attention deficit 

hyperactivity disorder (ADHD), and 
antisocial behavior. Notably, the 
receptor interacts with the p11 

protein (S100A10), the levels of 
which are observed to decrease in 

the brain during depressive episodes. 
A reduction in heteroreceptors is 

associated with the manifestation of 
a depressive-like phenotype. 

[1, 3-9, 17-
24]. 

5-HT1D* 
(HTR1D) 

Gi, Go , 
PKC, ↓ cAMP , 

PI3K/AKT 

In the CNS, it is primarily 
localized in the basal 

ganglia, specifically in the 
globus pallidus, substantia 

nigra, and caudate putamen. 
It is also present in the 

hippocampus and 
neocortex, as well as in the 
gamma motor neurons of 

the spinal cord. Moreover, 
the receptor is found in the 
peripheral nervous system 
(PNS), blood vessels, and 

genital tissues. 

It is implicated in the regulation of 
movement, often through its 
localization in basal ganglia 

structures like the globus pallidus, 
substantia nigra, and caudate 

putamen. In the cardiovascular 
system, it contributes to 

vasoconstriction. Additionally, the 
receptor serves as an inhibitory 

regulator of atrial norepinephrine 
release, thereby affecting 

autonomic control of cardiac 
function. 

Anxiety disorders have been 
associated with its dysregulation, 

suggesting a role in affective 
disorders. Importantly, interaction 
with the adapter protein p11 (S100 
A10) has been reported. Notably, 

p11 levels are found to be reduced in 
the brains of individuals with 

depression, linking receptor function 
to mood disorders. Additionally, the 
receptor has been shown to promote 

pancreatic cancer, indicating its 
involvement in oncogenic processes. 
Therefore, the receptor emerges not 
only as a modulator of physiological 
functions but also as a critical player 
in diverse pathological conditions. 

[1-3, 25-
27] 

5-HT1E 
(HTR1E) 

Gi, Go , 
β -arrestin/ERK, ↓ 

cAMP 

Is predominantly found in 
the CNS, specifically in the 
cortex and limbic system, 

implicating it in the 
regulation of cognitive and 

emotional functions. 
Beyond the CNS, the 

receptor is also localized in 
blood vessels and genital 

tissues, suggesting a role in 
vascular and reproductive 

physiology. 

Is implicated in a variety of 
physiological processes, including 

memory enhancement and 
vasoconstriction. Moreover, the 
receptor plays a neuroprotective 

role in the central nervous system 
by defending neurons from 

oxidative and excitotoxic stress via 
the β-arrestin/ERK signaling 

pathway. Genetic consideration 
indicates that the HTR1E gene 

exhibits minimal polymorphism in 
human populations, suggesting a 

Altered stress responses in 
individuals are potentially associated 

with the risk of developing mental 
disorders, but also play a role in the 

development of adaptive stress 
responses. 

[1-3, 28, 
29] 
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Receptor 
(Gene) 

Cell Transduction 
Factors Localization Function Pathology Literature 

consistent function across 
individuals. 

5-HT1F 
(HTR1F) 

Gi, Go , 
↓ cAMP , 

Located in the CNS, 
specifically in the frontal 
cortex, hippocampus, and 

olfactory bulb, as well as in 
the peripheral nervous 
system. Additionally 

present in genital organs, 
mesentery, blood vessels, 

and kidneys. 

Induces vasoconstriction and 
inhibits glucagon production in the 
alpha cells of the pancreatic islets. 

Facilitates mitochondrial 
biogenesis in the proximal tubules 

of the kidneys. 

Mitigates migraine symptoms, 
inhibits dural inflammation. 

[1-3, 30-
32] 

5-HT2A 
(HTR2A) 

Gq, G11 , 
Gi, Go, PLC, IP3 , 

Ca 2+ , Ras GTPases 
, Ras-

Raf/MEK/ERK. 
↑cGMP, 

Src kinases 
β -arrestin/ERK, 

JAK/ STAT3 
PI3K/AKT/mTOR 

CNS (cortex, hippocampus, 
olfactory bulbs, basal 

ganglia, dopaminergic and 
GABAergic neurons), PNS, 

gastrointestinal tract, 
platelets, fibroblasts, 

lymphocytes, myocytes, 
genital organs, blood 

vessels, heart. 

Appetite, imagination, cognition, 
learning, memory, mood, 

perception, sexual behavior, sleep, 
thermoregulation. Regulates 

metabolic changes during 
neurostress. Exhibits 

pronociceptive effects through 
Gq/11 signaling pathway. 

Vasoconstriction, enhanced 
myocardial contractility, platelet 

aggregation, adipocyte 
differentiation. Notably, 5-HT2A 

may exhibit constitutive activity in 
the absence of a ligand. 

Addiction, anxiety, schizophrenia, 
hallucinations. The receptor is 

implicated in the pathogenesis of 
epilepsy and hypertension. May 

exert ambivalent effects on 
depression. Reduced expression of 

the receptor is observed in the cortex 
in Alzheimer's disease. Facilitates 

cardiac hypertrophy through 
AKT/mTOR signaling. Augments 
synaptic release of NMDA via the 

PLC/PKC pathway. 

[1-3, 33-
41]. 

5-HT2B ( 
HTR2B) 

Gq , G11 , _ 
G 13, PLC _ IP 3 , 
Ca 2+ , ERK , NO / 
cGMP , GTPases 
Ras , c - Yes , Src 

and Fyn kinases , PI 
3 K / AKT / NF - κ 

B 

CNS ( cortex, 
hippocampus, thalamus, 

pituitary gland, pons, 
medulla oblongata, 

cerebellar nuclei, lateral 
septum, dorsal 

hypothalamus and medial 
amygdala, expressed in 
neurons and microglia), 

PNS, platelets, blood 
vessels, gastrointestinal 

tract, Kupffer cells of the 
liver, kidneys , Pancreatic 
β-cells, adipocytes, spleen, 
lungs, uterus, heart, bone 

marrow, adipocytes , 
genitals. 

Memory, learning, appetite, sleep; 
exerts an anxiolytic effect and 

modulates deep (slow-wave) sleep 
while inhibiting impulsive 

behavior. In cellular and systemic 
physiology, it modulates microglial 

function, cardiovascular activity, 
and gastrointestinal motility. 

Facilitates vasodilation but induces 
vasoconstriction in the pulmonary 
artery during hypoxic conditions. 

Stimulates the production of TNF-α 
in fibroblasts and TGF-β1 in 
hepatic stellate cells, thereby 

promoting megakaryocyte 
proliferation, erythropoiesis, and 

myelopoiesis. Catalyzes lipolysis in 
adipocytes and fortifies the IL-

6/STAT3 signaling pathway. The 
expression of this receptor is 

upregulated in response to IL-4 and 
IL-6 via the JAK/STAT pathway. 

Engages in the pathogenesis of 
various conditions, notably migraine 

(in cases of hyperfunction) and 
schizophrenia (in instances of 

receptor deficiency), and contributes 
to visceral pain. Exhibits a dual role 
in certain neoplastic conditions. In 
macrophages, it curtails the release 
of pro-inflammatory cytokines and 

fosters a shift towards the M2 
phenotype at the expense of the M1 
phenotype. Facilitates hypertrophy 

of cardiomyocytes and is implicated 
in heart failure. Involved in fibrosis 
of internal organs. Possesses pro-

inflammatory activity and 
exacerbates insulin resistance. 

[1-3, 42-
49]. 

5-HT2C 
(HTR2C) 

Gq , G11 , _ 
G 12, G 13 , Gi , Go 
, PLC , _ IP 3 , Ras 

GTPases , Src 
kinases , PKC , 

ERK , Ca2 + , NO / 
cGMP , ↓ cAMP 

(via Gi / o ) 

CNS ( present in large 
quantities in the choroid 

plexus ( plica choroidea ), 
hippocampus , prefrontal 

cortex, and in the 
subthalamic and lateral 

habenular nuclei. 
predominantly localized on 
GABAergic, glutamatergic, 

dopaminergic, 
neuropeptidergic and 
cholinergic neurons) , 
gastrointestinal tract, 

platelets. Blood vessels, 
genitals. 

Regulates deep sleep, appetite, and 
gastrointestinal motility. Functions 

as a heteroreceptor for 
norepinephrine and dopamine, 

inhibiting their release in the limbic 
system. Influences movement, 

mood, sexual behavior, sleep, and 
thermoregulation. Involved in 

energy homeostasis, particularly in 
aspects of nutrition and glucose 

metabolism, by acting on the 
hypothalamus and brainstem. 

Serves as a mitogen that controls 
cellular proliferation and 

differentiation across various cell 
types. Modulates the hypothalamic-
pituitary-adrenal axis. Notably, 5-

HT2C may exhibit constitutive 
activity in the absence of a ligand. 

Addiction, anxiety, depression, 
epilepsy, schizophrenia, and 

antisocial behavior are associated 
with 5-HT2C receptor dysregulation. 
Overactivity of the 5-HT2C receptor 

may exacerbate symptoms of 
depression and anxiety. Genetic 
knockout studies in mice have 

shown that the absence of 5-HTR2C 
leads to increased food intake, 
insulin resistance, and obesity. 

Paradoxically, activation of 5-HT2C 
in Sim1 neurons in the 

paraventricular nucleus of the 
hypothalamus stimulates food 

consumption. Numerous human 
polymorphisms of the 5-HT2C 

receptor have been identified as risk 
factors for neuropsychiatric diseases 

as well as obesity. 

[1-3, 50-
58]. 
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Receptor 
(Gene) 

Cell Transduction 
Factors Localization Function Pathology Literature 

5-HT3 
(HTR3) 

Ionotropic receptor, 
which is a Na + and 

K + channel 

In the CNS, it is 
predominantly found in 

regions such as the cortex, 
medulla oblongata, 

hippocampus, caudate 
body, putamen, and brain 
stem, including the area 
postrema and the dorsal 

motor nucleus of the vagus 
nerve. Additionally, this 
receptor is present in the 

PNS and the 
gastrointestinal tract. 

Notably, 5-HT3 is also 
expressed in various 
inflammatory cells, 

encompassing monocytes, 
macrophages, dendritic 

cells, T cells, B cells, and 
mast cells. 

Plays a pivotal role in learning and 
memory processes. Activation of 
this receptor opens a channel that 

facilitates an excitatory response in 
neurons. This excitation occurs due 
to the influx of sodium (Na+) and 

potassium (K+) ions, and, to a 
lesser extent, divalent cations like 
calcium, as well as low molecular 

weight organic cations. 
Furthermore, subunits A and E of 

the 5-HT3 receptor are localized on 
the inner mitochondrial membrane. 

The action of serotonin on these 
subunits has been shown to 

influence changes in the 
mitochondrial membrane potential 

and the rate of oxygen 
consumption. This suggests a 

multifaceted role for the 5-HT3 
receptor, extending beyond 

neurotransmission to cellular 
bioenergetics. 

Is implicated in a variety of 
neuropsychiatric conditions, 
including addiction, anxiety, 

depression, and schizophrenia. Its 
activation is also associated with 

gastrointestinal disturbances such as 
vomiting and nausea. Importantly, 
the receptor plays a role in immune 

modulation, promoting the 
production of pro-inflammatory 

cytokines and contributing to 
inflammatory processes. Certain 

polymorphisms in the HTR3 gene 
have been identified as risk factors 
for obsessive-compulsive disorder 
and irritable bowel syndrome. This 
underscores the receptor's multi-

systemic influence, from 
neuropsychiatric function to 
gastrointestinal and immune 

regulation. 

[1-3, 59-
64]. 

5-HT4 
(HTR4) 

Gs , 
Gi, Go , Gq, G13, ↑ 
cAMP ( via Gs), Ca 
2+ , β -arrestin/ERK, 

Ras-Raf/ERK 

CNS (cortex, limbic 
system: olfactory bulbs, 

striatum, ventral pallidum, 
septum, hippocampus and 
amygdala; GABAergic, 

glutamatergic, and 
cholinergic neurons), PNS, 
gastrointestinal tract, heart, 

adrenal glands, bladder, 
lungs, genitals 

It is implicated in the regulation of 
appetite, specifically inducing 
hypophagia. The receptor also 
modulates learning, memory, 
mood, and motor skills. In the 

cardiovascular system, it 
contributes to increased cardiac 

contractility, exhibiting an 
inotropic effect. In the realm of 

neurotransmission, 5-HT4 
facilitates the release of several key 

neurotransmitters, including 
acetylcholine, GABA, and 

dopamine. Intriguingly, like the 5-
HT3 receptor, it is localized on the 
mitochondrial membrane and has a 

role in regulating mitochondrial 
function. A noteworthy aspect of 5-

HT4 receptor biology is its age-
dependent expression, which tends 

to decline with advancing age. 
Additionally, under normal 

conditions, the receptor interacts 
with the p11 protein (S100A10), 
further diversifying its functional 

implications. 

It is implicated in the etiology and 
clinical manifestations of depression, 
serving as a pivotal regulator in the 

homeostasis of various 
neurotransmitter systems. This 

regulatory role positions the receptor 
as a potential key player in 

neurodegenerative and 
neuropsychiatric disorders, including 

Alzheimer's disease, Huntington's 
disease, Parkinson's disease, and 

major depressive disorder. 
Polymorphisms in the HTR4 gene 
have been identified as potential 
contributors to bipolar disorder, 

adding another layer of complexity 
to the receptor's involvement in 
mental health. Furthermore, the 

receptor is associated with metabolic 
disorders, specifically obesity, 

suggesting a far-reaching impact on 
both neurological and metabolic 

homeostasis. 

[1-3, 64-
68]. 

5-HT5A* 
(HTR5A) 

Gi, Go, 
Gs, ↓ cAMP ( via 

Gi/o) 

It is primarily localized in 
the CNS, notably in regions 
such as the limbic cortex, 

the nuclei of the raphe 
reticular formation, and the 
spinal cord. Additionally, 
the receptor is found in 

genital tissues. 

Despite its implication in a range of 
physiological and cognitive 

functions, including motor activity, 
cognition, memory, acoustic startle 

response, pain modulation, 
learning, and food intake, the 

receptor remains one of the least 
studied in the 5-HT family. 

Interestingly, knockout models of 
this receptor in transgenic mice 
have not exhibited significant 

observable changes. This might 
indicate a degree of functional 

redundancy with other receptors or 
compensatory mechanisms that 

mitigate the loss of this particular 
receptor. 

Exhibits a dual role in mental health, 
contributing to antidepressant effects 
but also implicated in hallucinations, 

psychosis, and schizophrenia. The 
compound valeric acid serves as an 

agonist for this receptor, adding 
another layer of complexity to its 

pharmacological profile. Moreover, 
there is tentative evidence to suggest 

a possible association with breast 
tumor pathogenesis. 

[1-5, 69-
74] 

5-HT5B 
(HTR5B) 

Pseudogene in 
humans - - - - 
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Receptor 
(Gene) 

Cell Transduction 
Factors Localization Function Pathology Literature 

5-HT6 
(HTR6) 

Gs , 
Gq , ↑ cAMP , 
mTOR , Cdk 5, 
GTPases - Rho , 

Ras - Raf / ERK , 
Src and Fyn kinases 

, MAPK - JNK 

In the CNS, 5-HT6 is 
localized primarily to 

GABA interneurons, and 5-
HT6 is also present on 

glutamatergic pyramidal 
neurons in the prefrontal 
cortex and hippocampus . 

Cognition, learning, memory, 
mood, appetite (hyperphagia). 

Reduces the release of dopamine, 
norepinephrine, reduces 

glutamatergic and cholinergic 
neurotransmission, but enhances 

GABAergic signal transmission. In 
embryogenesis, it modulates key 

processes in the development of the 
nervous system, from neuronal 

migration to the formation of brain 
circuits. 

Manifests a complex role in various 
neuropsychiatric conditions, 

including anxiety, depression, 
schizophrenia, and epilepsy. 

Notably, there is a diminished 
expression of this receptor in the 
cortical regions of Alzheimer's 

disease patients, further 
complicating its role in cognitive 

function. Studies using 5-HT6 
knockout mice have demonstrated 
cognitive impairment along with 

abnormal anxiety levels, reinforcing 
the receptor's critical involvement in 

both cognition and emotional 
regulation. Beyond the nervous 

system, emerging evidence suggests 
that 5-HT6 may also influence the 
immune microenvironment within 

tumor tissues. 

[1-3, 75-
80]. 

5-HT7* 
(HTR7) 

Gs , 
G12, ↑ cAMP, 

Cdk5, Ca 2+ , Rho 
GTPase , Ras-

Raf/ERK, 
PI3K/AKT/ mTOR 

CNS (cortex, thalamus, 
hypothalamus, 

hippocampus, cerebellar 
Purkinje neurons, spinal 

cord ), PNS, blood vessels, 
gastrointestinal tract, 

genitals. T lymphocytes. 

Plays a crucial role in various 
physiological functions, including 

the modulation of immune respons-
es, specifically through the produc-
tion of IL-10 by T cells. Addition-
ally, it has vasoregulatory effects, 

evidenced by its capacity to reduce 
vascular resistance in internal 

organs and skeletal muscles. Its 
ability to promote venous vasodila-
tion further underscores its vascular 
functions. Interestingly, the recep-
tor forms heterodimers with the 5-

HT1A receptor, implicating a likely 
coordinated modulation of seroto-

nin signaling. On a cellular level, 5-
HT7 is involved in neurogenesis 
and influences synaptic plasticity 
by increasing the expression of 
NMDA receptors through the 

cAMP/PKA signaling pathway. 
These diverse roles indicate that the 
5-HT7 receptor is integral to both 
immune modulation and neural 
plasticity, making it a subject of 

interest for further research in both 
immunological and neurological 

disorders. 

It is implicated in anxiety disorders 
and appears to be activated in 

neuropathic pain, a condition that 
often coexists with depression. 

Experimental studies have shown 
that the receptor's interaction with 

the S100B protein induces 
depressive-like behavior, further 
implicating it in mood disorders. 

Beyond its role in the central 
nervous system, the receptor also 

appears to facilitate tumorigenesis, 
as its activation has been shown to 
promote the growth of tumor cells. 

Additionally, the receptor's ability to 
activate the TRPA1 ion channel 

suggests a role in the somatosensory 
system, specifically in inducing 

itching sensations. 

[1-3, 81-
87]. 

Note. * - possibility of functioning as an autoreceptor when localized on the presynaptic membrane. The main types of G -proteins that mediate the function 
of the receptor are highlighted in bold , 5-HT is 5-hydroxytryptamine (serotonin), GABA – gamma-aminobutyric acid, R – receptor, cAMP – cyclic adenosine 
monophosphate, cAMP – cyclic guanosine monophosphate, PI 3 K – phosphoinositol 3-kinase, PLC – phospholipase C , IP 3 – inositol 3-phosphate, PKC – 
protein kinase C, CNS - central nervous system, PNS - peripheral nervous system, GIT - gastrointestinal tract, ACTH - adrenocorticotropic hormone, S100 - 
calcium-binding proteins (belong to the DAMP category ), MAPK - mitogen-activated protein kinases ( ERK , JNK), Cdk 5 -cyclin - dependent _ kinase 5. 
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