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INTRODUCTION

Relevance of the research topic. The immune system is a complex biological
system designed to combat foreign antigens, recognize foreign external and internal
antigens, destroy infected and abnormally developing cells, as well as to control
tolerance to autoantigens and commensal microbiota, thereby fulfilling the
important biological task of species preservation.

As a result, innate immune deficiencies (11D) or primary immunodeficiencies
(PID) can lead to increased susceptibility to infections, autoimmune processes,
autoinflammatory diseases, malignancies, or allergies. The cause of this may
primarily be genetic changes, both at the level of the genome and of individual genes
that encode protein molecules involved in immune mechanisms.

Although until recently PIDs were considered rare diseases and individual
genetic disorders may not occur frequently, in aggregate they can affect a significant
number of people. Moreover, due to improved diagnosis and the development of
next-generation sequencing (NGS) technologies, the reported prevalence of primary
immunodeficiencies (PIDs) has increased to approximately 40 per 100,000
population in recent years [89, 164].

In order to develop new methods for the diagnosis and therapy of
immunopathology, a deep understanding of the functioning of the immune system
at all levels of the organism is necessary. The emergence of high-throughput
biological methods has allowed for an unprecedented understanding of the
molecular mechanisms underlying the dynamics of the immune system and its
interplay with other systems in the body. However, the tremendous complexity of
all the parameters, spanning several orders of spatial and temporal scales, can only
be grasped through the use of systems computational immunology - in particular,
through the use of computational approaches for processing and modeling large
immunological data.

Our work focuses on three diseases: congenital neutropenia (one of the most

common forms of PID), Hennekam syndrome (one of the rarest), and RBCK1
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deficiency, which is classified as an autoinflammatory PID but also has an increased
susceptibility to pyogenic infections. RBCK1 deficiency was first described in 2012
[200], Hennekam syndrome in 1989 [25], and the first genetic discoveries of
congenital neutropenia date back to 1999 [137,140]. However, diagnosing each of
these syndromes remains a challenge, as new gene variants continue to be identified
that lead to the phenotypes of these diseases, and the precise mechanisms of
Hennekam syndrome and RBCKZ1 deficiency are still the subject of debate.

Furthermore, it is important not only to identify gene variants but also to
demonstrate their influence on the final product - the protein, whose destabilization
can be assessed by in silico tools. This will accelerate the assessment of the
pathogenicity of the gene variant and enable the inclusion of identified variants in
the list of causative factors to speed up diagnosis, and to approach methods of
pathogenetic or gene therapy, which are the ultimate goals of studying congenital
human pathology.

Thus, the importance of identifying causative gene variants in
immunopathology, as well as searching for the mechanisms of pathology that lead
to the phenotype of selected syndromes, have motivated the research goal.

Purpose of the study: To determine the role of potential pathogenic variants
of causative genes in the pathogenesis of congenital immune disorders - RBCK1
deficiency, congenital neutropenia, and Hennekam syndrome - using bioinformatics
analysis methods.

Research objectives:

1. We will conduct a comparative analysis of gene expression in RBCK1
deficiency relative to healthy children and patients with CINCA/NOMID
syndromes, Macleod-Wells syndrome, and mevalonate kinase deficiency.

2. We will assess the pathogenicity of nonsynonymous single nucleotide
variants in the ELANE and TCIRG1 genes in congenital neutropenia.

3. We will identify potential new candidate genes involved in the

development of diseases belonging to the group of congenital neutropenias.
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4. We will identify new variants of the CCBE1, ADAMTS3, and FAT4
genes that lead to the development of Hennekam syndrome.

Methodology and research methods: The work was carried out at the
Department of Immunochemistry of the Chemical Technology Institute of UrFU, as
well as at the Institute of Immunology and Physiology of the Ural Branch of the
Russian Academy of Sciences (Ekaterinburg, Russia), in accordance with the
program of fundamental scientific research "Immunological mechanisms of human
ontogenesis and their role in the formation of pathological conditions™ (state
registration number - 01201352044).

Various data sources and research methods were used to solve the tasks set.
To investigate the pathogenesis of RBCK1 deficiency, a comparative gene
expression analysis was conducted, for which 2 datasets were downloaded from the
NCBI Gene Expression Omnibus (GEO): 1) GSE31064, which included data
obtained from skin fibroblasts of patients - 2 with RBCK1 deficiency, 1 with
MYDB88 deficiency, 1 with NEMO syndrome, and 3 healthy individuals (control);
2) GSE40561, which included data obtained from whole blood collected from 2
patients with CINCA/NOMID disease, 5 patients with Muckle-Wells syndrome, 2
patients with hyper Ig-D syndrome, 1 patient with RBCK1 deficiency, and 41
healthy children (control).

Differentially expressed genes in the disease may play a key role in the studied
disease or condition and may be potential candidate genes for further research. To
this end, a gene expression analysis of two datasets was conducted to search for
candidate genes for congenital neutropenia, downloaded from NCBI GEO
(https://www.ncbi.nlm.nih.gov). Dataset GSE142347 included 93 female patients,
193 control patients, and 95 affected males, while dataset GSE6322 included 2

parents and 2 children with neutropenia.
Data on various genes and single nucleotide polymorphisms (SNPS) in
congenital neutropenia and Hennkam syndrome were downloaded from dbSNP-

NCBI (https://www.ncbi.nlm.nih.gov/snp/) and Ensembl

(https://www.ensembl.org/index.html). The following SNPs were downloaded for
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the study of SNPs in congenital neutropenia genes: for the ELANE gene, 3646 SNPs,
of which 301 were nonsynonymous SNPs (nsSNPs); for the TCGIR1 gene, a total
of 5627 SNPs, of which 811 were nsSNPs. For the study of SNPs in Hennkam
syndrome genes: CCBEL - 73845 SNPs and 407 nsSNPs; FAT4 - 68257 SNPs and
3434 nsSNPs; ADAMTS3: 70876 SNPs and 911 nsSNPs.

The investigation of gene variants in patients with congenital neutropenia and
Hennekam syndrome from the Sverdlovsk region was made possible thanks to
sequencing results (performed at the Genome Center Genomed) voluntarily
provided by patients for research purposes at the Institute of Immunology and
Physiology of the Ural Branch of the Russian Academy of Sciences, and further
anonymized.

To assess the harmfulness of nonsynonymous single nucleotide variants on
protein structure and function, the following sequence of actions was used. Firstly,
all identified nsSNPs in databases were evaluated using the SIFT tool. Then, the
sorted probably deleterious mutations were processed through the PolyPhen-2
program, and subsequently sent for evaluation by other bioinformatics tools,
including both software and online services, totaling up to 18 - PROVEAN,
FATHMM, LRT, M-CAP, META SVM, METALR, Mutation Assessor, Mutation
Taster, FATHMM MKLCoding, CAAD, PHD-SNP, Panter, SNP&GO, PON-P2,
DANN, SNAP?2 - all of which were accessible through VarCard [212] and MutPred
[99].

The final result of the filtration, in which the prediction of harmfulness
coincided in all tools, was considered as potentially harmful substitutions, and only
they were evaluated for their impact on the secondary and tertiary structure of the
protein, also assessed through molecular dynamics simulations.

To evaluate the impact of single nucleotide substitutions on the structure and
stability of proteins, bioinformatics analysis programs I-Mutant and MU-PRO were
used.

For the evaluation of protein-protein interactions, the software packages
STRING and Cytoscape were used.
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The KEGG database was used for functional enrichment analysis.

The program CemiTool was used for gene co-expression analysis.

In order to build 3D models of the wild-type and mutant protein structures and
evaluate the impact of mutations on protein function, the following programs were
used: HHPred, Alpha fold 2, Phyre2, I-Taser, Chimera UCSF Chimera, and PyMOL.

Molecular dynamics simulations were performed using the Maestro and
Gromacs 4.5.3 packages from Schroédinger LLC. Analysis of whole-genome
sequencing data and identification of single-nucleotide polymorphisms (SNPs) was
performed on a supercomputer provided by the Shared-Access Equipment Center of
the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy
of Sciences (IMM UB RAS - SC Center) in Ekaterinburg. Informed consent was
obtained from the parents of the patients for the use of de-identified research results.
Statistical analysis, bioinformatics tools, and mathematical models were performed

using Python version 3.7.1 (https://www.python.org/) and R version 3.4.3

(https://www.r-project.org/) on the Linux operating system.

Degree of reliability. The reliability of the research results was ensured by
the careful application of established research methods and procedures, the use of
appropriate data collection tools, and thorough analysis of the collected data. The
study design was based on an extensive review of relevant literature, and hypotheses
were tested using various statistical and bioinformatics analyses. The applicant's
personal contribution consisted of direct participation in all stages of the dissertation
research, including the creation of the main idea, planning of scientific work,
formulation of working hypotheses, objectives, tasks, determination of the
methodology of the dissertation research, interpretation, and analysis of the results
obtained, which were conducted by the applicant with scientific supervisors - . A.
Tuzankina, Doctor of Medical Sciences, Professor, Honored Scientist of Russia, and
V.A. Cheresnev, Academician of the Russian Academy of Sciences, Doctor of
Medical Sciences, Professor. A large and diverse population sample was used for
the study, collected from online databases, and the data were analyzed using
bioinformatics and computational biology methods. The author, together with a


https://www.python.org/
https://www.r-project.org/

8

biotechnologist (an associated professor and a candidate of biological sciences, Dr.
Hafiz Musamil Rahman) and a candidate of sciences and senior researcher at the
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy
of Sciences, Dr. Mikhail Bolkov, conducted bioinformatics analysis, which included
analysis of differential gene expression, pathway analysis, gene ontology analysis,
protein-protein interactions, in silico nsSNP analysis, protein modeling, and
molecular dynamic simulation.

The provisions for defense:

1. A deficit of RBCK1 is associated with reduced expression of genes
involved in immune response signaling pathways, inflammatory response, and
protein phosphorylation.

2. Congenital neutropenia is associated with a list of genes that expands the
spectrum of known genes associated with primary immunodeficiencies.

3. Newly identified non-synonymous single nucleotide variants in the
TCIRG1 and ELANE genes have a destabilizing effect on the TCIRG1 and ELANE
proteins, respectively.

4. Newly identified non-synonymous single nucleotide variants in genes
associated with Hennekam syndrome result in destabilization of the structure and
function of CCBE1, ADAMTS3, and FAT4 proteins.

The scientific novelty of research

1. The scientific novelty of the research lies in several key aspects. Firstly,
the study identified differences in gene expression in peripheral blood mononuclear
cells in individuals with RBCK1 deficiency compared to healthy individuals. This
finding sheds new light on the underlying mechanisms of RBCK1 deficiency and
may contribute to the development of new diagnostic and treatment approaches.

2. Secondly, the study identified new pathogenic variants in the TCIRG1 and
ELANE genes, which were analyzed for their impact on the corresponding proteins
for the first time. This information is important for understanding the molecular basis

of diseases associated with these genes and could lead to new therapeutic strategies.
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3. Thirdly, the study identified new candidate genes for congenital
neutropenia, which may be useful in the diagnosis and treatment of this disease in
the future.

4. Finally, the study identified new non-synonymous single nucleotide
polymorphisms (nsSNPs) in the causative genes of Hennekam syndrome (CCBEL,
FAT4, and ADAMTS3) that have a significant impact on the structure and function
of these proteins. This information adds to our understanding of the molecular basis
of this syndrome and could contribute to the development of new therapeutic
approaches.

Theoretical and practical significance of the research

The theoretical significance of the study lies in obtaining new data on genetic-
phenotypic relationships, which form the pathogenetic basis of diseases associated
with inborn errors of immunity, namely RBCK1 deficiency, congenital neutropenia,
and Henneman syndrome, through the development of a program for the sequential
use of bioinformatic analysis methods, including molecular dynamics simulations.
This will allow the use of the obtained information in further research aimed at
identifying therapeutic targets for these diseases.

The practical significance of the study lies in the emerging possibility of using
predicted gene variants in the differential diagnostic process when identifying
primary immunodeficiency syndromes, such as RBCK1 deficiency, congenital
neutropenia, and Henneman syndrome. The developed program for sequential use
of bioinformatic analysis methods can be used in the search for new candidate genes
associated with inborn errors of immunity.

Implementation of research results in practice

The results of this work have been implemented in the educational process of
the graduate program at the Institute of Immunology and Physiology of the Ural
Branch of the Russian Academy of Sciences, as well as in the Department of
Immunohemistry at the Chemical-Technological Institute of the Ural Federal
University named after the first President of Russia, Boris Yeltsin. Additionally, the

findings have been incorporated into the scientific research practices of the
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Inflammation Immunology Laboratory at the Institute of Immunology and
Physiology of the Ural Branch of the Russian Academy of Sciences. Furthermore,
the obtained results have been applied in the work of the State Budgetary Healthcare
Institution "Maternal and Child Healthcare Clinical Diagnostic Center".

Publications. Regarding publications, the applicant has published 13 works
based on the dissertation results, including 5 publications in journals recommended
by the Higher Attestation Commission (VAK) with a K1 category rating and indexed
in international electronic databases Web of Science Q1-2, Web of Science (Q2-
Q4), and Scopus with a total of 6 publications.

Volume and structure of the thesis. The dissertation is composed of 209
pages of typewritten text, and includes an introduction, literature review, materials
and methods, three chapters with the results of original research, conclusions,
practical recommendations, a list of abbreviations, and a list of references (228
sources, including 12 domestic and 216 foreign). The work is illustrated with 20
tables, 79 figures, and 2 formulas. The language used in the dissertation is both
grammatically and scientifically sound.

Acknowledgments. | am sincerely grateful to Mikhail Artemovich Bolkov,
senior research fellow at the Laboratory of Inflammation Immunology at the
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy
of Sciences, for his insightful comments and illuminating discussions.

| am grateful to Professor Yevgeny Yuryevich Gusev, head of the Laboratory
of Inflammation Immunology at the Institute of Immunology and Physiology of the
Ural Branch of the Russian Academy of Sciences, for his systematic approach to the
issues raised in our work, as well as for his important observations on the general
molecular mechanisms and signaling pathways investigated in our research.

| am grateful to Boris Hermanovich Yushkov, Doctor of Medical Sciences,
professor at the Institute of Immunology and Physiology of the Ural Branch of the
Russian Academy of Sciences, and corresponding member of the Russian Academy

of Sciences, as well as to Alexei Petrovich Sarapulcev, Doctor of Medical Sciences,
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for their precise comments, which allowed us to adjust our work in the necessary

direction.
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CHAPTER 1 - REVIEW OF THE LITERATURE

Primary immunodeficiencies (P1Ds), which arise from congenital errors of the
immune system, are classified into more than 485 monogenic syndromes and can
affect up to 1% of the population [4, 89]. Without proper detection and treatment,
individuals with PIDs are susceptible to serious, long-lasting, and often life-
threatening infections, autoimmune and autoinflammatory processes, reparative
disorders, and tumors. Despite the achieved successes, awareness of PIDs remains a
critical issue for both the medical community and the general population, as it should
lead to improved diagnosis and timely application of modern and effective
therapeutic methods, which will not only improve the quality of life but also save it
for those suffering from these diseases. Meanwhile, patients with various
manifestations of the disease do not always have a chance of recovery due to the
delayed identification of the underlying cause - the presence of primary
immunodeficiencies, which can be observed, for example, in patients with
oncological pathology, despite the well-known fact of an increased risk of malignant
tumors in PIDs compared to the population without PIDs. The same can be observed
in autoimmune or autoinflammatory pathology, which may be the only
manifestation of PIDs [149].

1.1 - PID classification, Prevalence, Diagnosis, treatment and prevention
of PID

The symptoms of primary immunodeficiencies can include infectious
diseases, which may be caused by inherited immune system errors [115], often
characterized by many other deviations, including increased susceptibility to
malignant  tumors,  lymphoproliferative,  autoimmune  diseases, and
autoinflammatory disorders [4, 89]. Since 2017, all primary immunodeficiencies
have been classified as inherited immune system errors, but the term "primary
immunodeficiency" still appears in the International Classification of Diseases, 11th

revision [21]. Access to research related to primary immunodeficiencies is difficult
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due to the rarity of disorders and the lack of known causal genetic defects [103].
Phenotypic manifestations of diseases, like other consequences of genetic pathology,
can appear at any age, but more severe forms of the disease are more commonly
encountered in infancy or early childhood. Since PID often manifests as infections
with various symptoms and clinical manifestations, in practical healthcare,
infections are often treated while overlooking the underlying cause [9]. This often
leads to recurrent infections, early chronicity, development of severe complications
and disease progression, disability, irreversible organ damage, or even death. For
example, in the United States in the 2010s, the average time from the onset of
symptoms to the diagnosis of PID was 12.4 years [228]. This means that many
people with primary immunodeficiency (PID) face recurrent infections with
negative consequences that can affect their personal, social, and professional life for
over a decade. However, after recognition of inherited immune system defects and
treatment of PID, patients can lead a normal, productive life provided that they
receive pathogenetically justified therapy or radical curative measures [2, 10, 51].
To address this critical problem, the Jeffrey Modell Foundation (JMF) has
established a global network of specialized centers and developed 10 warning signs
of PID [74]. The full original document can also be found on the official JMF
website. However, at present, an improved version of 12 warning signs is used in
Russia, which places special attention on non-infectious manifestations. They are
more diverse, and in many syndromes, infectious manifestations are absent or
secondary.

In November 2021, the National Association of Experts on Primary
Immunodeficiencies (NAEPID), together with the charitable foundation
"Podsolnukh,” which provides assistance to children and adults with immune
disorders, updated the list of warning signs for primary immunodeficiencies for use
by healthcare specialists of various profiles. This list focuses on the signs of primary
immunodeficiencies that manifest primarily in the first year of life and often lead to
fatal outcomes in early childhood (Figure 1).

Warning signs of primary immunodeficiencies:
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1. Family history - the presence of PID cases in relatives.

2. Frequent bacterial infections.

3. Severe course of bacterial infections requiring the use of intravenous
antibiotics.

4. Infections caused by opportunistic pathogens.

5. Severe atypical skin manifestations, edema.

6. Inflammatory bowel disease with early onset and/or severe course.

7. Decreased values in complete blood count.

8. Prolonged enlargement of lymph nodes, liver, spleen.

9. Significant reduction in the size of the thymus, lymph nodes, and tonsils.

10. Recurrent fevers without foci of infection.

11. Combination of multiple autoimmune  disorders, including

endocrinopathies.

12. Facial features (congenital malformations and minor developmental

anomalies).
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C. Picard et al. (2015) determined the prevalence of primary
immunodeficiency disorders (PID) as 1 case per 1200, with a range of 1:600 for IgA
deficiency and 1:20,000 for all immunodeficiencies, 1:50,000 for T-cell
immunodeficiency, and 1:100,000 for X-linked agammaglobulinemia [227]. Recent
data suggest that inborn errors of immunity occur in 1% of the population [79].

Immunodeficiency disorders are considered more significant for healthcare
planning in countries where deaths from common infections have been almost
completely eliminated, and children with PID survive long enough to be identified.
Therefore, Pilania et al. (2019) claim that PIDs are most often detected in countries
where infant mortality does not exceed 15/1000 births [57]. Epidemiological
observations of PIDs in Asian countries such as Japan and Korea date back to the
1950s. The first survey and registration program for PID patients in Japan was
created in 1974 with the establishment of the Immunodeficiency Registration Center
in the Pediatrics Department of the University of Tokyo [84]. 497 patients were
registered in Japan from 1966 to 1975. Among them, the most commonly diagnosed
PIDs were IgA deficiency, X-linked agammaglobulinemia (XLA), and ataxia-
telangiectasia. The Ministry of Health, Labor and Welfare of Japan established a
research program that created a clinical research group to conduct epidemiological,
pathological, diagnostic, and therapeutic research on PIDs, and by 2008, the Primary
Immunodeficiency Diseases Network (PIDJ) database network was created to
expand research opportunities and patient service. In 2011, 1240 PID patients were
registered, and the prevalence of the disease was 2.3 per 100,000 population [142].
Although this prevalence was higher than in earlier reports in Japan, it was much
lower than in Western countries and the Middle East. Several reasons for this
discrepancy have been postulated.

In Japan, several factors may contribute to the lower prevalence of primary
immunodeficiency disorders (PI1Ds) compared to Western countries, including low
levels of consanguinity in the region, sampling bias (asymptomatic selective 1gA
deficiency, transient hypogammaglobulinemia of infancy, and some other PIDs were
not included in this study), and lower detection rates of PIDs in adults [142].
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Currently, there are facilities for the diagnosis and treatment of PIDs in 66 hospitals
throughout Japan [209].

The earliest reports of PIDs from China were published in the 1960s. Interest
in PIDs in China became more apparent in the 1980s [116]. In 1981, a section of
pediatric immunology was established at the Chinese Pediatric Society of the
Chinese Medical Association, and in 1998, a joint network and patient registry for
PIDs was established. The largest cohort of PID patients was registered at the
Children's Hospital of Chongging Medical University, where a diagnosis was made
for 352 patients between 2005 and 2011, with genetic analysis performed in 203
patients [219]. Large cohorts of PID patients have also been identified at other
medical centers in China, including the Children's Hospital of Fudan University in
Jiaotong, the Beijing Children's Hospital, and the Guangzhou Children's Hospital.

In the region of Taiwan, the Primary Immunodeficiency Care and Research
Institute (PICAR) at Chang Gung Memorial Hospital in Taoyuan serves a population
of approximately 23 million people and has diagnostic and treatment facilities for
various primary immunodeficiency disorders (PIDs) [57]. Another similar center is
located in Taipei. The incidence of PIDs in Taiwan was 2.17 per 100,000 live births,
and Taiwan was the first region in Southeast Asia where a nationwide newborn
screening for PIDs was conducted in 2012.

The University of Hong Kong established a specialized service for children
with PIDs in 1988, and in 1995, conditions for molecular diagnosis of PIDs were
first established. Currently, the University of Hong Kong conducts genetic diagnosis
for several PIDs using whole genome sequencing.

Due to the high degree of consanguinity in the Middle East, a large number of
PID cases have been reported in Turkey and Iran [15, 28]. Autosomal recessive
disorders are more common in these countries. The first department of pediatric
immunology was established in the children's hospital of Hacettepe University in
1972. In 1974, the Turkish Society of Immunology was founded. There are also
opportunities for hematopoietic stem cell transplantation (HSCT), and to date, about
80 patients with SCID have received HSCT in Turkey. Recently, two Jeffrey Modell
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Foundation (JMF) Centers for Immunodeficiencies have been established in Turkey:
the Department of Pediatric Allergy and Immunology at Marmara University in
Istanbul and the JMF Center at Hacettepe University [208].

The first center of clinical immunology and allergy in Iran was established by
Professor Abolhassan Farhoudi at the Children's Medical Center of Tehran
University of Medical Sciences in 1977 [6]. In 1999, a database for registering
Iranian patients with primary immunodeficiency disorders (PIDD) was created - the
Iranian Registry of Primary Immunodeficiencies (IPIDR), which is located at the
Children's Medical Center and covers major hospitals throughout Iran. By 2018, it
had registered 3,056 patients (with 1,395 new cases) [2]. The lIranian Primary
Immunodeficiency Association (IPIA) was founded in 1998 with the goal of
improving the diagnosis, management, and treatment systems, as well as promoting
research and education in the field of PIDD. Several centers also have the ability to
perform hematopoietic stem cell transplantation for PIDD patients.

Significant progress has been made in understanding the pathogenesis,
diagnosis, and treatment of these diseases over the past three decades. However, in
many developing countries, these diseases still remain insufficiently recognized.
This is mainly due to the lack of awareness among doctors, as well as the absence

of diagnostic equipment in resource-limited countries.

The earliest reports of primary immunodeficiency (PID) cases in India date
back to the late 1960s. Initially, cases of patients with Wiskott-Aldrich syndrome
(WAS), agammaglobulinemia, and ataxia-telangiectasia were reported [128, 131,
214]. In 2012, Gupta et al. published a study comparing the clinical profile of PID
patients in two large pediatric centers in India, the Advanced Pediatrics Centre at the
Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh
and the National Institute of Immuno-hematology (NI1IH) and B.J. Wadia Children's
Hospital in Mumbai [165]. The profile of PID patients differed between these two
centers. Antibody deficiency was the most common PID in Chandigarh, while
familial hemophagocytic lymphohistiocytosis (HLH) was the most common PID
diagnosed in Mumbai. Other common PIDs diagnosed in Chandigarh were WAS,
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hyper-1gE syndrome, ataxia-telangiectasia, and hereditary angioedema. More cases
of neutropenia, leukocyte adhesion deficiency (LAD), IFNy-1L12 pathway
disorders, and autoimmune lymphoproliferative syndrome were registered in
Mumbai [165]. With increasing awareness, more cases of PID are being diagnosed

throughout the country.

In other Southeast Asian countries, including Singapore, centers for diagnosis
and management of PID patients are also developing. In Singapore, 39 patients were
registered in 2003, and data were collected from three major centers, including the
Children's Medical Institute, National University Hospital, Tan Tock Seng Hospital,
and Women's and Children's Hospital [168]. Antibody deficiency was the most
common PID, followed by phagocytic defects. Since then, there has been a
significant increase in the number of diagnosed PIDs in Singapore, and many centers

in Singapore have the capabilities to perform genetic testing.

Malaysia and Thailand are also catching up in terms of awareness and
diagnostic base for PID. The national PID initiative was initiated in 2007 with the
aim of improving the diagnostic base in various centers in Malaysia, which led to an
improvement in the treatment and outcomes of PID patients [43]. The Malaysian
Primary Immunodeficiency Network (MyPIN) was established in 2009 with the aim
of improving the diagnostic and therapeutic base for PID. More than 300 PID
patients are registered here [127]. A study published in Thailand reports on 72
patients  with  various PID from the Ramathibodi  Pediatric
Allergy/Immunology/Rheumatology Clinic from 1991-2011 [167]. Intravenous
immunoglobulin (IVIG) therapy is also available to most PID patients at a subsidized
rate in Malaysia and Thailand [43]. The structure of PID diseases in Asia varies in
different Asian countries. Due to the high level of consanguinity in the Middle
Eastern countries, autosomal recessive (AR) diseases are relatively more common
[15]. In some other Asian countries, X-linked forms of the disease are more
common. Studies conducted in Japan and China claim that X-linked forms of SCID

and chronic granulomatous disease (CGD) are more common than autosomal
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recessive forms [197, 219]. As a result of consanguineous marriages, autosomal
recessive diseases are also very common in some Southeast Asian countries, such as
India, Pakistan, and Bangladesh [169]. Genotype can determine the clinical profile
of inherited diseases, it can be altered by many environmental factors and determine
the final phenotype [115]. Environmental factors affect the gut microbiota,
significant factors may include socio-economic standards and the spectrum of

available medical institutions.

In addition to the differences in the PID spectrum observed in Asia compared
to the rest of the world, PID patients in Asia also have a unique and distinct pattern
of infections that can contribute to morbidity and mortality in these patients. Among
these infections, Mycobacterium tuberculosis, Mycobacterium bovis, Burkholderia
pseudomallei, and Talaromyces marneffei are prevalent [57]. It has been established
that patients with chronic granulomatous disease (CGD) in Asia have a remarkably
high prevalence of tuberculosis infection compared to CGD patients from other
countries [94]. Due to the higher endemicity of tuberculosis in many Asian countries,
Bacillus Calmette Guerin vaccine is administered at birth. Therefore, disseminated
BCG infection is a major clinical manifestation of many PIDs in many Asian
countries, such as severe combined immunodeficiency (SCID), CGD, hyper-IgM
syndrome, and IL12-1FN-y-mediated defects [57].

It has also been reported a high frequency of arthritis in XLA patients from
Asian countries [216]. This is likely due to delayed diagnosis and subsequent delay
in the initiation of immunoglobulin replacement therapy in these patients.
Chromobacterium violaceum has been registered as an opportunistic infection in
phagocytic defects (e.g., CGD) in many Asian countries. Initially, it was reported in
patients from Malaysia, then it was reported in Vietnam, Thailand, Sri Lanka, India,
as well as in Hong Kong and Taiwan in China [144]. Mortality rates of up to 50%
have been reported in infections with this microorganism [224]. Similarly,
melioidosis caused by Burkholderia pseudomallei is also endemic in many countries

and is a major problem among patients with PID in Asia [98].
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In recent times, several primary immunodeficiencies (PIDs) have been
identified in association with a predisposition to endemic mycoses (such as
Talaromyces marneffei, disseminated coccidioidomycosis, histoplasmosis, and
paracoccidioidomycosis) in this region. These fungal infections are usually linked
to defects in the IL-12/IFN-y-mediated pathway, enhanced STAT1 function, and
other diseases mediated by Th17 lymphocytes [113, 155].

The oral live polio vaccine is still in use in several Asian countries and poses
a significant problem for many patients with PIDs from these countries. Patients
with hypogammaglobulinemia often receive it even before the diagnosis of
immunodeficiency is established. These patients can also become infected with the
vaccine strain of the virus through close contact in family and community, and it is
very difficult to eliminate it from the body. Thus, immunodeficiency-associated
vaccine-derived polioviruses (iVDPVs) remain a significant problem for these
patients [75, 165]. They are also a potential reservoir for poliovirus transmission. In
an international multicenter study, poliovirus shedding was studied in 653 patients
with PIDs (570 had primary antibody deficiency and 65 had combined
immunodeficiency). Thirteen patients (2%) shed polioviruses, and non-polio
enteroviruses were detected in 30 patients. Five of them (0.8%) were classified as
patients with immunodeficiency-related vaccine-derived poliovirus (iVDPV) [6,
153].

In Russia, according to Mukhin et al., 2020, the minimum overall prevalence
of PID is estimated at 1.3 per 100,000 people, with significant variations across
federal districts (from 0.9 to 2.8 per 100,000; 3) (Figure 2) [166].
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Figure 2 - Distribution of PID (STIs) in Russia by Federal Districts [166]

The Russian National Registry contains information on nearly 3000 patients
(60% male, 40% female) from all federal districts of the Russian Federation, with
68% being alive in 2020, of which 77% were children and 23% were adults. PID
was diagnosed before the age of 18 in 88% of cases. The most common PID groups
were antibody deficiencies (26%) and PID with syndromic features (22%). The
overall prevalence of PID in the Russian population was minimal at 1.3 per 100,000
individuals; the calculated birth rate of PID was 5.7 per 100,000 live births. The
median delay in diagnosis was 2 years, with this indicator ranging from 4 months to
11 years depending on the PID category [12, 166].

Since 1999, the International Union of Immunological Societies (IUIS) has
classified inborn errors of immunity (IEIs) into ten groups, depending on which part
of the immune system is affected. One of the identified groups, the tenth, includes
autoimmune conditions and somatic variants that mimic genetically determined

IEls. Each IEI group is associated with unique phenotypic manifestations of
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infections, autoimmunity, or inflammation. For example, patients with antibody
deficiencies usually suffer from bacterial respiratory infections, while patients with
deficiencies in the terminal complement fractions are prone to recurrent meningitis
caused by Neisseria bacteria. The IUIS report identifies ten PID (IEI) groups, each
of which is described in terms of its genetic cause [89].

Classification of Primary Immunodeficiencies 2022:

1. Immunodeficiencies with a combination of cellular and humoral
immune defects.

2. Combined  immunodeficiencies  associated  with  syndromic
manifestations.

3. Predominantly antibody deficiencies.

Immunodysregulation disorders.

Inherited defects in the number and function of phagocytes.

4
5
6. Defects in innate and adaptive immunity.

7 Autoinflammatory syndromes.

8 Complement deficiencies.

9 Bone marrow failure.

10.  Phenocopies of primary immunodeficiencies.

In brief, the main differences between primary immunodeficiencies (PIDs)
depend on the level of genetic defects and corresponding defects in receptors or
proteins. Functionally, the immune system is divided into two main components -
innate and adaptive immune responses, and depending on which component of the
immune response is primarily impaired, two major groups of immunodeficiencies
can be conditionally distinguished. However, this classification most fully reflects
the structure and diversity of innate immune errors [112]

Modern methods for treating PIDs include symptomatic support, targeted
therapy, replacement therapy, and two types of radical surgery: hematopoietic stem
cell transplantation (HSCT) and gene therapy [110] It should be noted that gene
therapy is still in the experimental stage of research, although it is already actively

implemented in clinical practice for some forms of genetic pathology. For some
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children with PIDs, HSCT is the most important and even the only way to treat the
disease and restore immune system functions. Moreover, the absence of genetic
confirmation is not a contraindication for HSCT [110].

One of the most important achievements of modern medicine is the speed of
diagnosis, including screening technologies that allow for the identification of
patients at preclinical stages of disease development. This enables timely treatment,
preventing the establishment of pathological phenotypes. The analysis of TREC and
KREC molecules in blood drops deposited on a Guthrie card is conducted in infants
during the first few days of life and allows for the detection of severe combined
immunodeficiencies and antibody formation defects that cause life-threatening
diseases [1]. As of 2023, such tests for the quantitative determination of TREC and
KREC are included in the expanded neonatal screening for all newborns in the
Russian Federation (Ministry of Health of the Russian Federation Order No. 274n
dated 21.04.2022) [7].

However, the diseases under consideration are not amenable to screening by
this method and, like many other congenital conditions, are not immediately detected
at birth but rather after a prolonged period of time. In primary immunodeficiencies,
the speed of diagnosis is a critically important factor. The identification of SNPs that
lead to diseases allows for their inclusion in automatic methods for assessing
pathology, such as various diagnostic test panels (including NGS technology) and
bioinformatics databases.

1.2 - Primary immunodeficiencies and innate immunity mechanisms

It is known that innate immunity includes epithelial and mucosal barriers,
natural antimicrobial products, pattern recognition receptors, and cytokines. It
phylogenetically precedes adaptive immunity and is present in all multicellular
organisms, including plants, insects, and animals. Although innate immune cells are
somewhat primitive, they organize a discrete immune response by recognizing
different pathogens through pattern recognition receptors [108, 130, 157].

Neutrophils, macrophages, dendritic cells, natural killer (NK) cells, and NKT cells
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in combination with natural barriers (primarily the skin, mucous membranes of the
gastrointestinal and respiratory tracts), antimicrobial agents, opsonins (such as
complement), and cytokines are the key components of innate immunity.

Inherited immunodeficiencies that lead to increased susceptibility to
tuberculosis and nontuberculous mycobacteria are collectively called Mendelian
susceptibility to mycobacterial diseases (MSMD) [27, 36].

Macrophages phagocytize mycobacteria, leading to the production of
interleukin (IL)-12 p70, the heterodimer of IL-12 p40 and IL-12 p35, as well as IL-
23, the heterodimer of IL-12 p40 and IL-12 p19. IL-12 and IL-23 stimulate T and
NK cells to phosphorylate signal transducer and activator of transcription (STAT)4
through their cognitive receptors, resulting in the production of interferon (IFN)-y.
The latter acts through its heterodimeric receptor, mainly phosphorylating STAT1
and activating interferon-responsive genes that contribute to mycobacterial
clearance. Inherited immunodeficiencies leading to increased susceptibility to
tuberculosis and nontuberculous mycobacteria are collectively referred to as
Mendelian susceptibility to mycobacterial diseases (MSMD) [27, 36]. In recent
years, it has been established that patients with MSMD have mutations in seven
different genes: IFNGR1, IFNGR2, STAT], 1L12B (IL-12p40), IL12RB1, TYKZ2,
and IKBKG (NEMO), all of which are involved in IL-12/23-dependent, IFN-y-
mediated immunity. Recently, mutations in the IRF8 gene have also been found to
be associated with the development of mycobacterial diseases (MSMD). Specific
mutations in these loci account for different forms of inheritance patterns (autosomal
recessive, autosomal dominant, or X-linked), presence or absence of protein
expression (missense or nonsense mutations), severity of the phenotype (complete
or partial deficiency), and specific affected function. These syndromes are clinically
heterogeneous and range from locally limited to life-threatening, widespread
mycobacterial diseases. In addition to mycobacteria, other intracellular bacteria
(such as Salmonella), viruses (such as the varicella-zoster virus), and fungi (such as
histoplasmosis, coccidioidomycosis, and paracoccidioidomycosis) have been
reported in patients with MSMD [181, 220].
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Mutations in Interferon-gamma receptor 1 (IFNGR1) were the first to be
identified as causing innate susceptibility to mycobacteria. This gene can be mutated
in a way that leads to recessive or dominant transmission. The dominant form is
most commonly characterized by non-tuberculous mycobacterial osteomyelitis [45].
While recessive complete mutations usually do not allow for protein expression,
dominant mutations are characterized by excessive accumulation on the surface of
the mutated receptor, which still binds to IFN-gamma but significantly suppresses
intracellular signaling. Deficiency of IL12RB1, detected in more than 140 patients
worldwide, is the most common form of innate susceptibility to mycobacteria, but
appears to be highly sensitive to the environment. Individuals carrying biallelic
mutations may demonstrate very weak susceptibility to mycobacteria, Salmonella,
or fungi, which correspond to partial penetrance and variable expressivity of this
deficiency [21].

Male patients with mutations in NF-kB essential modulator (NEMO) exhibit
a wide clinical heterogeneity. NEMO encodes the main modulator of the nuclear
factor-xB, also known as IkB kinase (IKK)y, a critical component of the IKK
complex. Mutations in this gene cause various diseases: amorphic alleles, leading to
null mutations, result in the development of pigmentation incontinence in females
but are lethal for male fetuses. On the other hand, hypomorphic alleles can also lead
to the development of pigmentation incontinence in females but manifest in males
as different combinations of X-linked anhidrotic ectodermal dysplasia and
immunodeficiency syndrome. X-linked anhidrotic ectodermal dysplasia with
immunodeficiency is likely the most common phenotype, but there is a tremendous
heterogeneity in this syndrome. Genotype-phenotype associations in this disease are
surprisingly elusive, but mutations at the very C-terminus, including stop codons,
have been linked to osteopetrosis and/or lymphedema [14, 158].

To date, only two patients with complete Tyrosine Kinase 2 (TYK2)
deficiency have been described [62]. Tyk2 is a member of the Jak/STAT signaling
family and is constitutively bound to receptors for type I interferons (IFN-alpha and
IFN-beta), interleukin-6, interleukin-10, interleukin-12, and interleukin-23. One
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patient had a homozygous deletion of 4 base pairs, resulting in an early stop codon.
He had a complex clinical phenotype characterized by viral (contagious molluscum,
herpes simplex), fungal (oral candidiasis), bacterial (Staphylococcus aureus, atypical
Salmonella), and mycobacterial (localized Calmette-Guérin  bacillus)
susceptibilities, as well as atopic dermatitis, moderate eosinophilia, and increased
IgE levels in the blood serum. Recently, a second case was reported in which the
patient did not have any allergic manifestations. Thus, Tyk2 deficiency disrupts
signaling of type | IFN (susceptibility to viruses), IL-12/IL-23 signaling
(susceptibility to mycobacteria and superficial fungi) [177], and IL-6 signaling
(susceptibility to S. aureus) [175].

Mutations in STAT1 can be recessive or dominant, leading to deep
susceptibility to broad infection in infancy (recessive complete deficiency) or milder
susceptibility to mycobacteria, which manifests later in childhood (partial dominant
deficiency) [18].

Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized
by selective susceptibility to Kkeratinocytic-tropic infections of human
papillomavirus (subgroup B1) and usually manifests in early childhood [66, 117].
The WHIM syndrome (MIM 193670) is a rare autosomal dominant disorder with a
frequency of approximately 1 case per 4.3 million live births [129]. The term
"WHIM" is an abbreviation of its main clinical features, including warts,
hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is
characterized by a delay in the release of neutrophils from the bone marrow, leading
to a decrease in their numbers in the blood. This can result in recurrent bacterial
infections, especially of the skin, lungs, and sinuses. Hypogammaglobulinemia
associated with WHIM syndrome is characterized by a reduction in all classes of
immunoglobulins, making patients vulnerable to bacterial and viral infections.
Warts, which are also a common feature of WHIM syndrome, can be persistent and
recurrent [129]. Patients with WHIM syndrome may also have delayed bone
marrow development, which can lead to myelodysplastic syndrome or acute myeloid

leukemia. WHIM syndrome is caused by dominant heterozygous gain-of-function
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(GOF) pathogenic variants in the gene encoding chemokine receptor 4 (CXCR4).
Since CXCR4 is involved in the retention of neutrophils in the bone marrow,
embryonic GOF mutations exacerbate this process, thereby slowing down the
release of neutrophils, leading to neutropenia [129]. The ubiquitin system plays an
important role in the regulation of TLR signaling. The ubiquitin system is a post-
translational modification system that regulates protein function [184]. In some
situations, the ubiquitin molecule is attached to target proteins to form polyubiquitin
chains. During the synthesis of these polyubiquitin chains, sequential conjugation of
the C-terminal glycine residue involves conjugation of the glycine residue in one
ubiquitin molecule with one of the seven lysine residues in another ubiquitin
molecule [111].
1.3 - Autoinflammatory Syndromes and RBCK1 Deficiency

Autoinflammatory diseases are a broad class of human pathologies associated
with innate immunity errors and defects in inflammation mechanisms. This class of
diseases was discovered relatively recently, but more than 40 autoinflammatory
diseases are now known. The main characteristic of these diseases is uncontrolled
autoinflammation in the absence of autoantibodies. Therefore, these syndromes were
previously called idiopathic fevers, considering that spontaneous inflammation
accompanied by fever is typical for them. However, autoinflammation mechanisms
have been identified in many long-known diseases that are not directly related to the
fever syndrome, such as obesity, rheumatoid arthritis, and Bechterew's disease. They
represent inflammation of serous membranes - pleura, peritoneum, synovial
membranes of joints, and eyes [161]

Thus, RBCK1 deficiency (RanBP-Type And C3HC4-Type Zinc Finger-
Containing Protein 1) is an autoinflammatory syndrome, characterized by increased
susceptibility to infections. In addition, RBCK1 deficiency is characterized by
glycogen metabolism disorder leading to its accumulation in muscles
(amylopectinosis). Patients with RBCKZ1 deficiency have broad and variable clinical

manifestations, including fever, infectious syndrome (various skin inflammations,
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recurrent bacterial infections, up to sepsis), as well as myopathies,
cardiomyopathies, and encephalopathies [161].

It is known that RBCK1, also known as HOIL-1, is involved in the assembly
of the linear ubiquitin chain complex. Ubiquitins are proteins that play the role of
"death kisses" for proteins inside cells, marking them with a black tag for cleavage
into amino acids in the proteasome. The linear ubiquitin chain assembly complex
(LUBAC) includes RBCK1, RNF31 (ring finger protein 31, also known as HOIL-
1-interacting protein or HOIP), and SHARPIN (SHANK-associated protein with RH
domain). The linear ubiquitin chain assembly complex (LUBAC) binds to linear
(Metl) ubiquitin chains and directs several proteins into the classical NF-kB
signaling pathway, preventing inflammation and participating in apoptosis [121,
189].

Studies have shown that LUBAC-catalyzed linear ubiquitination in response
to TNF-alpha stimulation participates in the activation of the canonical NF-kB
pathway and prevents cell death [184]. RBCK1 (58 kDa, also known as HOIL-1)
with two RanBP-type zinc fingers and a C3HC4-type RING finger is involved in the
recognition of substrates for LUBAC catalysis. Therefore, RBCK1 deficiency
affects the regulation of the immune system, leading to the development of
autoinflammatory syndromes. RBCK1 (also known as HOIL-1) is a protein that
forms a complex of approximately 600 kDa with two other proteins, SHANK-
associated RH domain-interacting protein (SHARPIN) and HOIL-1 Interacting
Protein (HOIP-1) [32, 111].

Defects in each of the LUBAC proteins individually lead to autoimmune
inflammatory syndromes. Known cases of HOIP deficiency in humans are
associated with decreased expression not only of HOIP, but also of other LUBAC
proteins. It is known that two patients with a HOIP defect have autoimmune
inflammation (especially small joint polyarthritis from an early age), recurrent
fevers, severe bacterial, viral, and fungal infections, and a pathological reaction to
pneumococcal antigens during vaccination. Patients with a RBCK1 defect have a
wide range of clinical outcomes, but the cause of this individual heterogeneity is
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unknown. However, all cases are accompanied to some extent by defective glycogen
accumulation [14, 95, 174].

Patients may simultaneously exhibit chronic autoimmune inflammation and
immunodeficiency, including recurrent sepsis [161]. Patients identified to date with
RBCK1 mutations (also known as RANBP2-type and C3HC4-type zinc finger-
containing protein 1) significantly differ in clinical outcome (skeletal muscle,
cardiac muscle, autoimmune inflammation, or immunodeficiency). The explanation
for this individual heterogeneity remains unclear, although it has been suggested that
the precise location of the variant in the gene may be a predictor of the predominant
phenotype, with mutations primarily leading to immunological dysfunction in the
N-terminal region of RBCK1, and mutations in the middle or C-terminal portions
leading to a (cardio-)myopathy phenotype [161]. M1-linked linear
polyubiquitination is mediated by LUBAC, a complex modification that makes
nuclear factor-kB (NF-kB) and its pleiotropic immune system critical for nuclear
translocation and transcriptional control. RBCK1 and HOIP contain a RING-
between-RING (RBR) domain. The linear ubiquitin assembly complex (LUBAC),
which includes HOIL-1-interacting protein (HOIP), Heme-oxidized IRP2 ubiquitin
ligase-1 (HOIL-1), and SHANK-associated RH domain interactor (SHARPIN),
often associates linear (Met1) ubiquitin chains in the canonical NF-kB pathway with
many target proteins [73]. The linear ubiquitin-specific deubiquitinase OTULIN
controls the function of LUBAC. Immune dysregulation is observed in mice and
humans with defects in the processes of linear ubiquitination and K63
deubiquitination [13].

HOIP is the catalytic subunit of the linear ubiquitination assembly complex
(LUBAC), which is essential for NF-kB signaling and therefore for proper innate
and adaptive immunity. To date, HOIP deficiency has been identified in only one
individual with symptoms such as immunodeficiency, systemic lymphangiectasia,
and autoinflammation [186].

HOIP deficiency is also manifested by lymphangiectasia in systemic edema,

gastrointestinal tract, and hypoalbuminemia, which can cause malabsorption.
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Molecular studies have established that fibroblasts and B-cells from patients who
are not responsive to immune stimuli and unable to maintain stable regulation of
NF-kB activity have an immunodeficient phenotype observed in the patient.
Compared to immune responses in fibroblasts, HOIP and HOIL1-deficient
peripheral blood mononuclear cells (PBMCs) were highly reactive to IL-1
stimulation and expressed proinflammatory cytokines IL-6 and MIP-1a. [198]. The
HOIL-1 deficiency in patient cells resulted in a decrease in IKK Kkinase
phosphorylation, a slowing of alpha 11B degradation, and a decrease in NEMO
ubiquitination in response to TNF or IL-1p stimulation, and a lower level of NF-aB
activation in patient cells was associated with a decrease in NF-aB transcriptional
activity. The catalytic center of the Linear Ubiquitin Chain Assembly Complex
(LUBAC) in fibroblasts and B cells from patients with HOIL-1 deficiency was
relatively undetectable, indicating a deficiency in LUBAC in these patients. LUBAC
Is active in the NF-xB pathway and binds linear polyubiquitin chains to unique Lys
residues of the NEMO protein. Human fibroblasts with HOIL-1 deficiency exhibit
weakened NF-«B activation [13, 193], resulting in weak transcription of genes
controlled by NF-kB and cytokine development in response to TNF and IL-1p.
These data are consistent with the results of mouse cell studies with RBCK1
knockout or knockdown gene [33].

1.4 - Monogenic, Multigenic, and Allogeneic Defects in Congenital

Neutropenia

Neutropenia is a common disorder that pediatricians regularly encounter, and
it is a serious health problem. In neutropenia, the absolute number of
polymorphonuclear cells decreases, making the body more susceptible to infections.
As a result, infections often become exceptionally severe or occur with an unusually
high frequency. Neutrophils are an important component of innate immunity and a
key product of hematopoiesis. The number of neutrophilic granulocytes in peripheral
blood is used to determine the severity of neutropenia. In most cases, the etiology of

neutropenia is iatrogenic and well-known to the treating physician. Allogeneic or
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autoantibodies are the second most common cause of neutropenia. The ability of
certain viral infections to induce neutropenia is well known [133, 144].

In addition to deviations from the normal range of leukocyte counts in
childhood and variations in the average number of neutrophils in individuals of
different races, an absolute neutrophil count below 1500/ul is considered
neutropenia and is often the initial symptom of this condition. Neutropenia can take
several forms, classified as mild when the absolute neutrophil count is between
1000-1500/ul, moderate when it is between 500-1000/ul, and severe when it is less
than 500/pul. Neutropenia is a common hematological condition in multiple primary
immunodeficiencies with various genetic defects, ranging from congenital
phagocytic defects to complicated immunodeficiencies, and can be used to screen
for acute infections [4, 90].

Inheritance of congenital neutropenia associated with PID is complex, ranging
from isolated severe congenital neutropenia to mental retardation, organ anomalies,
facial dysmorphisms, and depigmentation of the skin. Phagocytic innate anomalies
are divided into two categories according to the IUIS classification: deficiency of
phagocytes (neutropenia) and dysfunction of phagocytic cells [4, 89]. Chronic or
intermittent neutropenia may occur in a variety of inherited immune system
disorders, including various forms of antibody deficiency, reticular dysplasia,
WHIM syndrome, and other diseases. The main pathophysiological causes of severe
chronic neutropenia in patients with PID include abnormal differentiation of bone
marrow cells, improper release of granulocytes from the bone marrow, increased
apoptosis or increased death of peripheral blood granulocytes [4, 89, 144, 233]. Bone
marrow studies have shown that in most patients, myelopoiesis maturation stops at
the level of promyelocytes, leading to a decrease in the number of neutrophils but
an increase in the number of atypical promyelocytes [223]. Such infectious
conditions as otitis, gingivitis, skin infections, pneumonia, deep abscesses, and
sepsis in these patients begin in the neonatal period and, without appropriate

treatment, persist throughout life. In addition, patients with severe combined
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immunodeficiency (SCID) are at increased risk of developing leukemia. The cause
of SCID can be variants of various genes [90, 49, 187].

The causes of congenital neutropenia may include defects in neutrophil
maturation and function, immune dysregulation syndromes (various
hemophagocytic lymphohistiocytosis), some severe combined immunodeficiencies
(such as reticular dysgenesis (AK2 defect) and PAC2 activation defect), as well as
primary autoimmune neutropenia at different stages of neutrophil development.
Typically, patients with congenital neutropenia require antimicrobial prophylaxis
and treatment with granulocyte colony-stimulating factor, and radical cure is
impossible without hematopoietic stem cell transplantation. Currently, there are over
30 inherited errors of immunity (or primary immunodeficiencies) that can cause
neutropenia, and while each condition is rare, the overall prevalence of these
conditions in the population is significant, and a good and timely diagnosis is
necessary to prescribe adequate therapy. [104, 227].

It is known that mutations in the following PID genes lead to the development
of neutropenia and congenital neutropenia: ELANE, HAX1, G6PC3, WASP,
JAGN1, GFI1, SEC61A1, CSF3R, LYST, AP3P1, TCIRG1, VPS45, LAMTOR?2,
SBDS, DKC1, SLC37A4, BTK, CD40, CXCR4, AK2, GATA2, STK4, RMRP, and
VPS13B.

Classical congenital neutropenia depends on the function of elastase. Defects
in elastase lead to severe congenital neutropenia (SCN) types 1 (ELANE
deficiency), 2 (GFI1 deficiency), 3 (HAX1 deficiency or Kostmann's disease), 4
(G6PC3 deficiency), 5 (VPS45 deficiency), glycogen storage disease type 1b
(G6PT1 deficiency), X-linked neutropenia/myelodysplasia (WAS GOF mutation),
P14/LAMTOR?2 deficiency, Barth syndrome (3-methylglutaconic aciduria, type II)
(TAZ deficiency, X-linked), Cohen syndrome (VPS13 B deficiency), Clericuzio
syndrome (USB1 deficiency), JAGN1 deficiency, 3-methylglutaconic aciduria
(CLPB deficiency), G-CSF receptor deficiency (CSF3R), SMARCD2 deficiency,
specific granule deficiency (CEBPE), Shwachman-Diamond syndrome (caused by
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defects in at least 3 genes, SBDS, DNAJC21, and EFL1), HYOUL1 deficiency, and
SRP54 deficiency [188].

ELANE (OMIM #130130) encodes neutrophil elastase, a serine protease
expressed in myelomonocytic cells and their precursors. Neutrophil elastase is
mainly produced at the promyelocytic stage of neutrophil maturation and is retained
in the azurophilic neutrophil granules that participate in the destruction of
microorganisms [10, 96]. However, even when only this protein is mutated, different
clinical pictures of congenital neutropenia are observed, and the exact pathogenesis
of each condition remains unclear [68,137,139, 190].

The main mechanisms of neutropenia in the case of a defect in neutrophil
elastase are related to endoplasmic reticulum stress (unfolded protein response)
caused by the accumulation of misfolded elastase in the endoplasmic reticulum,
leading to the activation of death signals [81, 96]. It is known that ELANE becomes
the most abundant protein at the promyelocyte stage of neutrophil development,
reaching millimolar concentrations in neutrophils, supporting the theory that
accumulation of misfolded protein may cause a deficiency of chaperone proteins,
which activates death signals and apoptosis of immature neutrophils [31, 33]. On the
other hand, mutated neutrophil elastase blocks further differentiation, leading to
neutropenia [137]. In addition, the ELANE p.G185R polymorphism is associated
with impaired neutrophil differentiation and decreased expression of genes encoding
critical hematopoietic transcription factors, cell surface proteins, and neutrophil
granule proteins [96, 137].

The T-cell immune regulator 1 gene (TCIRG1) encodes a subunit of the large
protein complex known as vacuolar H+-ATPase (V-ATPase). This protein complex
acts as a pump for moving protons across membranes. This proton movement helps
regulate the pH of cells and their surrounding environment. VV-ATPase-dependent
acidification of organelles is necessary for intracellular processes such as protein
sorting, zymogen activation, and receptor-mediated endocytosis. V-ATPase consists

of a cytosolic V1 domain and a transmembrane VO domain. Alternative splicing
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results in many transcript variants. Mutations in this gene are associated with
infantile malignant osteopetrosis and severe congenital neutropenia.

The TCIRGL1 gene in humans is primarily associated with autosomal recessive
osteopetrosis. Molecular analysis has identified six new genes (TNFSF11,
TNFRSF11A, CLCN7, OSTM1, SNX10, and PLEKHM1) associated with
autosomal recessive osteopetrosis in humans. More than half of all patients with
autosomal recessive osteopetrosis have mutations in the TCIRG1 gene [20, 202].
Studies have shown that mice with disrupted Atp6i gene function develop severe
osteopetrosis [23, 41]. Despite significant progress in understanding the mechanisms
of osteoporotic diseases, the genetic basis of 30% of cases remains unclear [148].
According to research, TCIRG1 mutations include missense, nonsense, small
deletions/insertions, splice-site mutations, significant genomic deletions, and
intronic mutations [26, 34, 60, 138]. Autosomal recessive osteoporosis type 1 is
caused by mutations in the TCIRG1 gene, leading to impaired bone resorption and
abnormal accumulation of dense bone tissue. This can lead to fractures, bone marrow
insufficiency, neurological problems, and immunodeficiency, which can ultimately
result in premature death. This problem can be detected as early as 10 days of age.
The most common symptoms of the disease are pathological fractures, bone marrow
insufficiency, and compression of cranial nerves, which are caused by abnormalities
in bone tissue structure, metabolism, and insufficient foramen expansion of cranial
nerves [26]. High bone density can result from impaired bone resorption caused by
osteoclast dysfunction, which can lead to serious abnormalities. Some defects may
arise at early stages of fetal development, such as microcephaly, progressive
deafness, blindness, hepatosplenomegaly, and severe anemia. Secondary
intracranial hypertension can often lead to deafness and blindness [198].

There are numerous examples of multigenic (or polygenic) causes of
congenital neutropenia (CN), where mutation variants in multiple genes may
contribute to the formation of similar or different phenotypes of this disease [48].
Why is CN more multigenic compared to other PID? One possible reason is that the

multigenic nature of CN is a result of complex interactions between genes.
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Understanding the mechanism of their interaction should help doctors and
researchers gain insight into the pathophysiology of PID, enabling improved
diagnosis and treatment approaches. The key mechanisms underlying the protein-
protein interaction network of genes in congenital neutropenia (CN) remain unclear,
lacking a systematic level of interpretation. With the recent accumulation of new
gene expression data in CN [16, 50] and modern computational methods [97], there
IS an urgent need to identify candidate genes for CN. The use of systems biology and
bioinformatics methods will accelerate and improve the accuracy of identifying new
CN genes, allowing for a deeper understanding of the pathogenetic mechanisms of
this disease. Furthermore, this is a cost-effective and fast method that will assist
clinicians in diagnosing patients with CN phenotype and unknown genetic causes.

1.5 - Hennekam syndrome, phenotype and genotype

Hennekam syndrome is an autosomal recessive disorder and is one of the rarest
forms of primary immunodeficiency, characterized by developmental defects of the
lymphatic system [87]. The underlying cause of Hennekam syndrome is primary
lymphedema-lymphangiectasia, which is attributed to defects in the development
and/or functioning of the lymphatic system. It can affect any part of the body, with
a predominance in the lower extremities, intestines, abdominal and pleural cavities.
Additionally, patients with this condition often have flattened facial features, a broad
nasal bridge, hypertelorism, epicanthus, and other anomalies [25]. Currently, 27
different genes have been associated with primary lymphedema (either isolated or
as part of a syndrome). It was previously believed that the common signaling
pathway in the pathogenesis of lymphedema was the VEGFR3 receptor signaling
pathway. However, this pathway is only responsible for a third of all cases of
primary lymphedema, highlighting the existence of additional genetic factors.
Hennekam lymphangiectasia-lymphedema syndrome may be caused by mutations
in the CCBEL1 gene (in 25% of cases), as well as in the FAT4 and ADAMTS3 genes,
each of which influences the VEGF-C / VEGFR-3 signaling pathways [37, 67, 136,
226].
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Hennekam syndrome type 1, also known as CCBELl-associated Hennekam
syndrome, was first described by Dutch physician Raoul Hennekam in 1989 [25].
The main molecular mechanism of lymphedema in Hennekam syndrome type 1 is
the reduced ability of mutated CCBE1 (collagen and calcium-binding protein 1,
containing an epidermal growth factor domain) to accelerate and concentrate the
activation of the primary lymphangiogenic growth factor VEGF-C [226].

For Hennekam syndrome type 2, the cause is a homozygous or complex
heterozygous mutation in the FAT4 gene on chromosome 4qg28. Interestingly, a
mutation in the FAT4 gene can also cause Van Maldergem syndrome (VMLDS2),
another disorder in which some symptoms overlap with those of Hennekam
syndrome [83].

In a 2017 study, a group of authors led by P. Brouillard identified Hennekam
syndrome type 3, in which a heterozygous mutation was found in the ADAMTS3
gene on chromosome 4qg13. More importantly, the researchers highlighted the close
functional relationship between ADAMTS3 and CCBEL proteins in the activation
of the VEGFR3 molecule, which is a cornerstone for the differentiation and
functioning of lymphoid endothelial cells [124]. However, mutations in these genes
are only found in some patients, and the genetic etiology of most Hennekam
syndrome patients remains unclear, mainly because the syndrome is genetically
heterogeneous.

Knowledge about the genetic cause of Hennekam syndrome has allowed for
the identification of the involvement of the mTOR (mammalian target of rapamycin)
signaling pathway and the discovery of a potential therapeutic target, specifically
mMTOR inhibitors such as rapamycin and its analogues. mTOR is a protein that plays
a role in regulating cell growth and metabolism, and its dysregulation has been
implicated in the pathogenesis of several genetic diseases, including Hennekam
syndrome. mTOR inhibitors halt the progression of lymphedema and lymphatic
malformations, and also have anti-inflammatory and anti-fibrotic effects, but they

do not cure patients of existing lymphatic system abnormalities and their overall
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efficacy is not high. Therefore, understanding the genetic nature and pathogenesis
of Hennekam syndrome will help identify more effective targets for therapy.

1.6 - Problems in the study of primary immunodeficiencies

The following facts make primary immunodeficiency a complex group of
diseases for both practicing physicians and scientific researchers [3, 5, 8].

In the coming years, it will be extremely important to ensure universal access
to numerous scientific achievements and create a sustainable mechanism for timely
consideration of these achievements in future developments [118]. Although next-
generation sequencing is a revolutionary method for PID diagnosis, it is not available
in many countries, especially in low-income countries. Therefore, there is a real task
of achieving accessibility of this diagnostic method and reducing the cost of genetic
testing. It is also necessary to make other express tests for screening of antibody
deficiency syndromes easily accessible, which potentially could facilitate testing in
remote areas of countries with limited resources. In addition, newborn screening for
SCID and other lymphopenias represents hope for early diagnosis and treatment of
PID, but it needs to be implemented more widely in public and private medical
institutions, as it allows for the early detection of PID [9]. Following the United
States, several European countries have started pilot studies to implement neonatal
screening, or have already introduced it as a government project, as has been done
in the Russian Federation [7].

Access inequality to treatment and care for patients with PID, including issues
of reimbursement, availability, and creating an organizational structure for access to
medical care, etc., needs to be addressed. Additionally, a quantitative analysis of the
need for care in various regions of the world, especially in the Asia-Pacific region,
IS necessary to support advocacy efforts to increase government investment in the
treatment and research of PID [56].

As there is still limited awareness among the general public about PID, they
are often perceived as "exotic" diseases. Improving awareness, understanding, and
timely recognition of new forms of PID can change the lives of many patients in the

future. It is necessary to continue working together to maintain the supply of plasma-
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derived medicines worldwide, including during times when healthcare systems
experience difficulties in blood and plasma supply.

The constant need for the discovery of new advanced treatment methods is the
second obstacle because we are uncovering new types of diseases and better
understanding their nature.

The second stumbling block is that the phenotypic changes associated with
PID are usually very diverse. For example, in the case of patients with Wiskott-
Aldrich syndrome, the exact nature of the gene defect, such as missense or nonsense
mutation, the exact location of splice site anomalies, can significantly alter the
phenotype of the syndrome. The manifestations of mutations in this gene can range
from very severe to mild, such as X-linked thrombocytopenia, B-cell lymphoma,
frequent bacterial and fungal infections, eczema, low platelet count, or neutropenia.
The diagnosis of PID usually requires an in-depth analysis of clinical manifestations
in combination with an assessment of the patient's history and genealogy.

The major problem faced by researchers and clinicians is the difficulty in
finding information. Publicly available databases contain limited samples, which are
also less diverse compared to oncology data. There are very few information
resources that connect clinical descriptions and functional genomic data, protein-
protein interactions, and signaling pathways. Specialized databases include UniProt,
IntAct, STRING, and KEGG.

Several databases, registries, knowledge bases, prediction tools, and expert
systems are rapidly evolving in response to diagnostic requirements. According to
Richardson A.M. et al.'s 2018 article, the disease spectrum is further refined due to
the expansion of immunological, genetic, and epigenetic knowledge. The careful
application of these diagnostic tools and bioinformatics will not only help
understand these complex disorders, but also enable personalized therapeutic
approaches for disease treatment [61]. Krina Samargiti et al. in 2009 explained that
tools useful for PID diagnosis can be classified into the following seven categories
(Figure 3) [183].
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Firstly, the primary resources on PID provide a large amount of information
ranked at different levels, ranging from genes to protein structures, disease models
to specific diagnostic groups, and so on.

Secondly, there are classifications of PID that contain clinical features.

Thirdly, there are laboratory criteria and corresponding tools.

Fourthly, there are national and international patient registries for PID,
supplemented with mutation databases (the fifth category), whose information can
be used to compare the case under consideration with previously described cases.

Fifthly, there are bioinformatics tools available for predicting or prioritizing
new PID candidate genes, which are also used in PID diagnosis — this is the seventh

category.

General PID
information
resources

PID
classification
algorithms

Medical expert
systems

PID diagnosis

FPID
candidate
gene
predictors
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of laboratories

PID patient
registries

PID mutation
cdatabases

Figure 3 - Schematic grouping of bioinformatics resources and tools that provide

information on primary immunodeficiencies [183]

A rational approach to selecting and interpreting genomic analysis in primary
immunodeficiencies facilitates the integration of clinical data with immunological

and genetic data for establishing a diagnosis [61].
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Currently, genome-wide association studies (GWAS) are being conducted on
common diseases to identify common low-penetrance causal variants. Some of these
variants will alter protein sequences, the most common of which is a non-
synonymous single nucleotide polymorphism (nsSNP). The advantage of nsSNPs is
the ability to predict their functional impact on protein structure and function, both
for the final identification of the causal variant in the disease-associated
chromosome region and for further functional analysis of the nsSNP and the
associated protein [72].

It is known that non-synonymous SNPs (nsSNPs) alter protein function and
are more likely to cause disease in humans. Recent nsSNP studies using
computational approaches show the potential impact of mutations on understanding
the molecular mechanisms of various diseases [17, 41].

Studies have demonstrated that bioinformatics analysis of gene expression
profiles has significant potential in uncovering potential key genes and pathways in
the development of complex diseases [30, 180, 218].

The large number of different primary immunodeficiencies (PIDs) poses
difficulties in diagnosis, including at the clinical level. Additionally, many diseases
are so rare that it is impossible to find a sufficient number of families for analysis.
Screening and early detection of PIDs is a serious challenge for physicians. In recent
years, high-throughput sequencing has yielded a greater number of known genetic
defects. The identification of new candidate genes for PIDs will help prioritize genes
for confirmation in PID patients whose exact causal gene has not yet been identified.

In 2009, Keerthikumar et al. used a support vector machine method to classify
all human genes into PID genes and non-PID genes. The classification principle was
based on calculating a confidence score for each PID gene candidate based on 69
features observed for 148 known PID genes at that time [163]. Based on a literature
search, we found that the attention of scientific researchers involved in identifying
PID genes has also focused on integrating functional gene ontology (GO)
annotations and building datasets of protein-protein interaction networks. In 2018,

Guojun Liu and colleagues identified 172 candidate genes for common variable
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immunodeficiency (CVID) with similar biological functions to known CVID genes,
and eight genes were recently announced as CVID-associated genes [38, 94].
Ortutay et al. (2008) predicted 26 candidate PID genes by analyzing protein-protein
interaction network properties (PPI) of all known human immune system genes and
their ontologies (GO). In addition, 3,110 candidate disease genes related to PID were
predicted based on the calculation of the so-called biological distance (indicating
functional interdependence) [133, 159].

Researchers who wish to participate in the study of PID problems face the
question of whether PID is a multigenic or monogenic disease. Initially, PID was
considered to be a congenital and monogenic disease that follows the principles of
Mendelian inheritance [174, 178]. Monogenic diseases result from changes in a
single gene that occur in all cells of the body. However, progress in DNA sequencing
has led to the discovery of multigenic and somatic causes of PID, and a wide
phenotypic variability has been observed for these diseases [80, 211]. Understanding
that most PIDs are multigenic in nature is the first step in understanding the
pathogenesis of all diseases. According to the multigenic concept, PIDs are the result
of complex interactions between genes. Based on this, scientists tried to find the
"biological distance" between PID genes and other human protein-coding genes; it
was found that PID genes, compared to other human genes, are usually located in
the central node of the human genomic network and interact more closely with each
other [107]. In addition, PID genes form several closely related subclusters, most of
them having at least one functionally close neighbor among a wide range of
biological mechanisms [38, 107. 201]. Uncovering these relationships may provide
a better understanding of the diversity of genetic pathways underlying PID, which,
in turn, will help unlock new opportunities for drug development and therapeutic
approaches.

Genetic changes can lead both to a complete or partial loss of a protein
(nonsense variants), a decrease in its function (LOF - loss of function), and a gain of
function (GOF - gain of function). This is true for any proteins, including key

molecules involved in the immune response. To date, pathological variants of more
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than 485 genes included in the classification of congenital immunity errors (CIs) are
known [89], but a larger number of genes, whose research is in the earlier stages of
study, are awaiting detailed description. An important factor complicating the search
for causative genetic changes in a large number of diseases is the huge phenotypic
heterogeneity of congenital immunity errors, including defects in antibodies,
lymphocyte populations and subpopulations, complement system deficiency,
autoimmune and autoinflammatory pathologies, lymphoproliferative syndromes,
bone marrow failure, and immune dysregulation diseases. In a large cohort of
immunodeficiencies, combined immune-dependent processes such as autoimmune
and/or immune dysregulation can be observed, especially in cases in which genetic
errors lead to alterations in the molecules that regulate the immune response or are
involved in providing immune tolerance processes [146].

Despite the fact that, until recently, PIDs were considered rare diseases and
individual genetic disorders may be infrequent, collectively they can affect a
significant number of people. Moreover, as a result of improved diagnosis, due to
the development of next-generation sequencing (NGS) technologies, the reported
prevalence of primary immunodeficiencies (PIDs) has increased in recent years to
approximately 40 per 100,000 population [89, 164].

It is necessary to consider the complex interrelationships of all genes and
proteins in the body, since a simple genotype-phenotypic correlation very often
remains unclaimed - patients with a defect of the same gene can have a
fundamentally different phenotypic presentation [11].

If there is an assumption that there is an association between a PID phenotype
and a gene that has not been previously described from this point of view, thorough
functional studies confirming or refuting this association are required to make a
statement of a new disease or its new phenotypes. Investigating the values of genetic
alterations for immune system function has the unique advantage that immune cells
are readily available, usually requiring simple blood sampling to obtain the relevant

cells, in contrast to mutations affecting other hard-to-reach tissues (54).
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In order to prove causality, studies must demonstrate the significance of a
specific pathological gene variant with abnormalities of a specific immune process
leading to the corresponding disease phenotype. That is, a functional validation must
be performed, which includes assessment of the number and function of proteins,
analysis of signaling pathways, and the biological mechanism of pathology
implementation [89, 164].

Determining the causal relationship of new mutations is easier when several
unrelated families with similar genetic variants and phenotype are identified.
However, new diseases may have single descriptions. Some limitations of single-
patient studies are the lack of statistical power or the presence of confounding
genetic modifiers, which reduces the ability to identify a particular variant as a
disease-causing mutation. Experimental modeling of genetic changes in cell lines or
animal models overcomes these limitations. To confirm a new gene whose
pathological variants can lead to the development of PIDs in a single individual, the
following criteria must be met: the genotype found cannot be in individuals without
a clinical phenotype; experimental studies must demonstrate that the variant
damages, destroys, or alters the function or expression of the gene product; the
causal relationship between the genotype and the clinical phenotype must be
confirmed in an appropriate cell or animal model [80].

It should be noted that bioinformatics is now becoming an increasingly
prominent part of various fields of biology, including molecular biology, statistics
and genetics, which play a crucial role in analyzing the expression and regulation of
genes and proteins [195]. The study of the effect of single-nucleotide
polymorphisms - SNPs - in the coding part of the genome, which directly affect the
structure of proteins, is the focus of the vast majority of the scientific community.
According to estimates by various researchers, about 90% of genetic variations in
humans are due to single-nucleotide polymorphisms. They are determined with a
frequency of 1% to 5%, depending on the pathology under study. The values of allele
distribution frequencies are important for determining the relevance of SNPs in a

particular population and for understanding the potential effect of this SNP on
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susceptibility to diseases or other characteristics of interest [179]. The HapMap
project, an international collaborative effort aimed at identifying common genetic
variations among humans, has described and genotyped over 4 million DNA
samples. This has made it possible not only to validate SNPs and estimate the
frequency of their alleles in the general population, but also to assess the degree of
linkage disequilibrium between them. Moreover, SNP genotyping technologies have
recently advanced to the point where hundreds of thousands of SNPs can be typed
in thousands of people, for example, using the case-control method. Consequently,
the discovery of causal variants for common diseases will accelerate, and it would
be helpful if the functional effects of SNPs could be predicted bioinformatically to
guide functional studies and narrow down the best candidate SNPs in areas of the
genome that exhibit a high degree of disequilibrium [46]. This is why the science of
bioinformatics is becoming an integral part of modern research.

The most identifiable category of SNPs is a small fraction of mutations (less
than 1%) that alter the protein sequence, and these are usually nonsynonymous
substitutions (nsSNPs). The nsSNP prediction tools are used to predict the potential
structural and functional impact caused by these variants. In order to more accurately
assess the structural impact caused by changes in the amino acid sequence,
bioinformatic analysis and protein structure modeling is required to account for
changes in the amino acid sequence. Knowledge of the three-dimensional structure
of a gene product is of great help in predicting and understanding its function, its
role in intracellular processes and in pathology formation, molecular dynamics
modeling can be performed to observe changes in many parameters such as protein
stability —and  flexibility.  Interdisciplinary = modeling  (bioinformatics,
pathophysiology, genetics and immunology) is gradually becoming a major trend in
the development of technologies for clinical research [46].

The identification of candidate genes for various types of pathology requires
their verification, which requires not only the use of clinical data but also

experimental data, as well as analysis of gene co-expression, activation of biological
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signaling pathways, protein-protein interaction, and evaluation of the functioning of
the altered protein in the simulation.

Methods for integrating expression profiles and protein-protein interaction
(PP1) data are an important part of the ongoing research. Bioinformatics methods are
used to study the differential mechanisms of protein interactions in all immune cell
lines, transcriptional activators and modules, which are analyzed in the context of
examples obtained by clustering the PPI network. The results of such studies
demonstrate that integration of protein interaction networks with the most
comprehensive database of immune cell gene expression profiles can be used to
generate hypotheses about the mechanisms underlying differentiation and
differential functional activity across immune cell lines. Comparative analysis of the
detected differences between diseased and healthy states helps to obtain
pathogenetic characterization of immune-dependent diseases and ultimately lead to
the development of new curative methods of pathology correction.

Currently, research on differentially expressed genes defines one of the
special scientific directions in which the identification of genes that are differentially
expressed in diseases is assumed. In pharmaceutical and clinical research, the results
of evaluating differentially expressed genes can be valuable targets for identifying
candidate biomarkers, therapeutic targets, and gene signatures for diagnosis.
Although specific changes in gene expression do not always lead to subsequent
biological activity, such data can nevertheless be combined with other biological
data and, with the ability to provide high throughput to create complex analyses,
such as building a target disease landscape [123, 213], can be an indispensable
research tool [63].

In our work, aimed at finding significant pathophysiological mechanisms for
the formation of certain types of immune-dependent pathology, various sites with
congenital immune disorders, including congenital neutropenia, RBCK1 deficiency
autoflammatory syndrome and Hennecam syndrome, were chosen as models of
immune-dependent pathology using research methods of bioinformatics analysis in

disorders characteristic of primary immunodeficiencies.
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CHAPTER 2 - MATERIALS AND METHODS USED IN THE WORK

2.1 - Study materials

The data were collected from open data sources, various gene variant
databases, as well as two blinded sequencing results of Sverdlovsk patients, which
were provided for study to the Institute of Immunology and Physiology, UrB RAS,
previously approved by the ethical committee and published.

Two datasets (datasets) from the NCBI GEO database were used to perform
the task of investigating the pathogenesis of RBCK1 deficiency, viz: GSE40561,
which includes data from whole blood collected from 2 patients with
CINCA/NOMID disease, 5 patients with Muckle-Wells syndrome, 2 patients with
mevalonatkanase deficiency, 1 patient with RBCK1 deficiency and 41 healthy
children (for comparative analysis); GSE31064, which included data obtained from
skin fibroblast cells of 2 patients with RBCK1 deficiency, 1 patient with MYD88
deficiency, 1 patient with NEMO syndrome, and 3 healthy patients (from a control
group).

Data sets from NCBI GEO were used for the task of investigating candidate
genes associated with congenital neutropenia: GSE142347 (patients with congenital
neutropenia - 93 women and 95 men, and 193 control patients); GSE6322 (family
case - 2 healthy parents and 2 children with congenital neutropenia). A list of 442
known PID genes (and microdeletions) at the time of the study, including 31 genes
associated with congenital neutropenia, were obtained from the European
Immunodeficiency Society website. CD3D, CD3E, CD3Z, CORO1A, IL2RG,
IL7R, JAKS3, LAT, PTPRC, ADA, AK2, DCLRE1C, LIG4, NHEJ1, PRKDC,
RAC2, RAG1, RAG2, B2M, BCL10, CARD11, CD3G, CD40 (TNFRSF5),
CD40LG (TNFSF5), CD8A, CIITA, DOCK2, DOCKS8, FCHO1, ICOS, ICOSLG,
IKBKB, IKZF1, IL21, IL21R, ITK, LCK, MALT1, MAP3K14, MSN, POLD]1,
POLD2, REL, RELA, RELB, RFX5, RFXANK, RFXAP, RHOH, STK4, TAP1,
TAP2, TAPBP, TFRC, TNFRSF4, TRAC, ZAP70, ZAP70, ARPC1B, WAS,
WIPF1, ATM, BLM (RECQL3), CDCA7, DNMT3B, GINS1, HELLS, LIG1,
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MCM4, NBS1, NSMCE3, PMS2, POLE1, POLE2, RNF168, ZBTB24, 11q23del,
22911.2, CHD7, Del10p13-p14, FOXN1, FOXN1, SEMASE, TBX1, EXTLS3,
MYSM1, RMRP, RNU4ATAC, SMARCAL1, CARD11, ERBB21P, IL6R, IL6ST,
PGM3, SPINKS5, STAT3, TGFBR1, TGFBR2, ZNF341, MTHFD1, SLC46A1,
TBH2, IKBKB, IKBKG, NFKBIA, ORAIl, STIM1, BCL11B, CCBEI, EPGS5,
FAT4, KDM6A, KMT2A, KMT2D (MLL2), NFE2L2, PNP, RBCK1, RNF31,
SKIV2L, SP110, STAT5B, STATSB, TTC37, TTC7A, BLNK, BTK, CD79A,
CD79B, IGHM, IGLL1, PIK3CD, PIK3R1, SLC39A7, TCF3, TCF3, TOP2B,
ARHGEF1, ATP6AP1, CD19, CD20, CD21, CD81, IKZF1, IRF2BP2, MOGS
(GCS1), NFKB1, NFKB2, PIK3CDGOF, PIK3R1, PTEN, RAC2, SEC61A1,
SH3KBP1, TNFRSF13B, TNFRSF13C, TNFSF12, TRNT1, AICDA, AICDA,
INO80, MSH6, UNG, CARD11, IGKC, Mutation or chromosomal deletion at
14932, FAAP24, PRF1, SLC7A7, STX11, STXBP2, UNC13D, AP3B1, AP3D1,
LYST, RAB27A, BACH2, CTLA4, DEF6, FERMT1, FOXP3, IL2RA, IL2RB,
LRBA, STAT3, AIRE, AIRE, ITCH, JAK1, PEPD, TPP2, IL10, IL10RA, IL10RB,
NFAT5, RIPK1, TGFB1, CASP10, CASP8, FADD, TNFRSF6, TNFSF6,
CARMIL2, CD27, CD70, CTPS1, MAGT1, PRKCD, RASGRP1, SH2D1A,
TNFRSF9, XIAP, CEBPE, CLPB, CSF3R, DNAJC21, EFL1, ELANE, G6PC3,
G6PT1, GFI1, HAX1, HYOUL, JAGN1, LAMTOR2, SBDS, SMARCD2, SRP54,
TAZ, USB1, VPS13B, VPS45, WAS, ACTB, CFTR, CTSC, FERMT3, FPR1,
ITGB2, MKL1, RAC2, SLC35C1, WDR1, CYBA, CYBB, NCF1, NCF2, NCF4,
CYBC1, G6PD, GATA2, CSF2RA, CSF2RB, CYBB, IFNGR1, IFNGR1, IFNGR2,
IL12B, IL12RB1, IL12RB2, IL23R, IRF8, IRF8, SG15, JAK1, RORC, SPPL2A,
STAT1, TYK2, TYK2, CIB1, CXCR4, TMC6, TMCS8, FCGR3A, IFIH1, IFNAR1,
IFNARZ2, IRF7, IRF9, POLR3A, POLR3C, POLR3F, STAT1, STAT2, DBR1,
IRF3, TBK1, TICAM1, TLR3, TLR3, TRAF3, UNC93B1, CARD9, IL17F,
IL17RA, IL17RC, STATL, TRAFR3IP2, IRAK1, IRAK4, MYD88, TIRAP, APOL1,
CLBH7, HMOX, NBAS, NCSTN, OSTMI1, PLEKHMI, PSEN, PSENEN,
RANBP2, RPSA, SNX10, TCIRG1, TNFRSF11A, TNFSF11, IL18BP, IRF4,
ACP5, ADA2, ADAR1l, DNASE1L3, DNASE2, IFIH1 (GOF), OASI,
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RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, TMEM173, TREX1, USP18,
POLA1, MEFV, MEFV, MVKNLRC4, NLRP1, NLRP1, NLRP12, NLRP3,
NLRP3, NLRP3, PLCG2, ADAM17, ALPI, AP1S3, CARD14, COPA, HAVCR?2,
ILIRNIL36RN, LPIN2, NOD2, OTULIN, PSMB8*, PSMB8*, PSMG2, PSTPIP1,
SH3BP2, SLC29A3, TNFAIP3, TNFRSF1A, TRIM22, C1QA, C1QB, C1QC, C1R,
C1R, C1S, C1S, C2, C3C3, C4A, C4B, C5, C6, C7, C8A, C8B, C8G, C9, CD46,
CDs5, CD59, CFB, CFB, CFD, CFH, CFH, CFHR1, CFHR2, CFHRS,
CFHR4CFHRS, CFHRICFHR2, CFHR3CFHR4, CFHRS, CFI, CFP, FBHS3,
MASP2, SERPING1, THBD, ACD, ACD, BRCA1, BRCA2, BRIP1, CTC1, DKC1,
DNAJC21, ERCC4, ERCC6L2, FANCA, FANCB, FANCC, FANCD2, FANCE,
FANCF, FANCI, FANCL, FANCM, MAD2L2, NOLA2, NOLAS, PALB2, PARN,
RADS1, RAD5S1C, RFWD3, RTEL1, RTEL1, SAMD9, SAMDOL, SLX4, SRP72,
STN1, TERC, TERT, TERT, TINF2, TINF2, TP53, UBE2T, WRAP53, XRCC2,
XRCC9.

The list of 31 genes associated with congenital neutropenia used in this study
includes: MTHFD1, LYST, CSF3R, ELANE, JAGN1, LAMTOR2, SMARCD?2,
VPS13B, WAS, WDR1, CXCR4, TCIRG1, HAX1, G6PC3, GFI1l, GATAZ2,
SLC37A4, SBDS, STK4, CLPB, AP3B1, USB1, VPS45, CXCR2, EIF2AKS3,
RAB27A, AK2, RMRP, TBN2, TAZ, and CD40LG.

A study on gene variants in patients with congenital neutropenia and
Henneman syndrome from the Sverdlovsk region was conducted using de-identified
data voluntarily provided by the patients' parents for bioinformatic analysis with the
approval of an ethics committee. Only VCF files with missense mutations in the
FAT4 (Henneman syndrome) and TCIRG1 (congenital neutropenia) genes, as well
as de-identified clinical data, were used. Medical observation and clinical research
on the patients were carried out prior to our study in medical organizations in the
Sverdlovsk region.

Data on various missense mutations for genes associated with the investigated
diseases were obtained from public databases. Specifically, FAT4, ADAMTS3,
CBEE1, ELANE, and TCIRG1 were obtained from the publicly available dbSNP

database on the National Center for Biotechnology Information (NCBI) portal
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(https://www.ncbi.nlm.nih.gov/snp/), as well as the Ensmble database

(https://www.ensembl.org/index.html), Swiss-Prot database (http://expasy.orq./),
OMIM (https://www.omim.org/) and HGMD (https://www.hgmd.cf.ac.uk/).

The dbSNP database is an online resource designed to aid researchers in the

field of biology. Its aim is to create a unified database containing all identified
genetic variations (single nucleotide polymorphisms) that can be used to investigate
a wide range of genetically determined natural phenomena. In particular, access to
molecular variations catalogued in doSNP helps to carry out fundamental research,
such as physical mapping, population genetics, evolutionary relationships, and
enables rapid and quantitative assessment of variations in a particular genomic
region (Figure 4). Most of these nucleotide sequence variations were identified
through DNA sequencing and genotyping of samples from the general population,
in addition to the group of patients (Figure 5).

The Ensembl database (USA) allows for the analysis of transcription for a
specific gene, as well as corresponding protein sequences and their various variants.
Specifically, for our analysis, we uploaded a CSV file of variants for the genes we

investigated into the database (Figure 6).

National Center for Biotechnology Information
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Figure 4 - Data representations of missense mutations using the CCBEL1 gene as an
example in the doSNP database on the NCBI portal
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Figure 5 - Data sources and paths of data usage in the doSNP (non-synonymous
single nucleotide polymorphisms) database of the National Center for
Biotechnology Information (NCBI, USA)
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Figure 6 - Ensemble database example for searching information on the CCBE1
gene

Other databases were similarly utilized. For cross-checking of non-
synonymous single nucleotide polymorphism (nsSNP) data, information was
searched in the Exome Aggregation Consortium (EXAC), Genome Variation Server,
Functional Single Nucleotide Polymorphism (F-SNP), Human Gene Mutation
Database (HGMD), which compiles known gene mutations responsible for inherited
human diseases. Similarly, the Genetic Association Database (GAD), which

contains an archive of more than 3600 dbSNP records, and the Human/Genome
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Variation Database (HGVBase), which reports associations with diseases based on
published clinical studies, were used, although very few of these statistical
associations have been confirmed.

The Online Mendelian Inheritance in Man (OMIM) database used in this
study is a catalog of genetic disorders of inherited diseases, associated with human
genes not only highly penetrant but also rare (MAF - minor allele frequency of less
than 0.01 in the population).

We collected data on non-synonymous SNPs from these portals, associated
with the studied genes FAT4, ADMATS3, CCBEI, ELANE, and TCIRGL1; data
related to other factors were excluded. The number of SNPs for the listed genes is
displayed in Table 1.

Table 1 - SNPs loaded from the dbSNP and Ensemble databases

Genes SNP nsSNP
ELANE 3646 301
TCIRG1 5627 811
CCBE1 73845 407
FATA 68257 3434
ADAMTS3 70876 911

2.2 - Methods used in the work

2.2.1 - Differential gene expression analysis from data from patients with

HOIL-1/RBCK1 deficiency and patients with congenital neutropenia

Differential gene expression analysis (DEG) is a process used to identify
genes differentially expressed between two or more conditions, such as normal and
disease or conditions under different treatments. This analysis can be performed
using bioinformatics tools and pipelines [222].

The DEG analysis procedure involves several steps, including quality control

of raw sequencing data, mapping reads to a reference genome or transcriptome,
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quantification of gene expression levels, data normalization, statistical analysis to
identify differentially expressed genes, and functional analysis of identified genes.

A standard differential gene expression method was used to determine the
differences in gene expression in the data set for the RBCK1 deficiency study. The
analysis was performed using the Bolstad R package. Differences in gene expression
between patients with RBCK1 deficiency and normal samples were evaluated as
significant with a P-value < 0.05, |logFC| > 1, and a false discovery rate (FDR) p-
value of 0.57 was used as a threshold value [28].

False discovery rate (FDR) determination is a method for conceptualizing the
first-order error rate when testing null hypotheses in multiple comparisons. The
Log2-value is a cutoff value important for calculating the difference between
expression levels.

The false discovery rate method is one of the main statistical tools when
annotating genes using GO.

GO is a standardized vocabulary of terms that are used to describe the
functions of genes, cellular components, and biological processes in various
organisms. Each gene can be annotated to one or more GO terms, which can be used
to infer gene function and to compare the functions of different genes [71].

Gene expression differences were calculated using the R Limma package.
Functional enrichment analysis of genes characteristic of various congenital primary
immunodeficiencies and autoinflammatory diseases was performed using the R
Bioconductor package.

Gene Set Enrichment Analysis (GSEA) is a set of methods to link a set of
genes to a change in phenotype [225]. Such methods often use databases of
previously annotated gene sets to formalize existing phenotype data (e.g., Gene
Ontology Project (GO) terms: molecular functions, biological processes, or cellular
components [134]. The result of the method (program release) in this case is a set of
preannotated sets that help determine whether the ordered list of genes depends on

the phenotype or whether they are simply random [225]. Such preannotated sets are
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called overrepresented (if the frequency is higher than the background) or
underrepresented (if the frequency is lower than the background).

Enrichment coefficient (ES) is a statistical coefficient determined by the
Kolmogorov-Smirnov method, reflecting the degree of overrepresentation of genes
at the top or bottom of the ranked list of genes.

Over-enrichment analysis (ORA) and Gene Ontology (Gene Ontology) and
the signaling pathways involved were performed using the analysis of the borrowed
signaling pathways in the KEGG, WikiPathways, reactome, and DAVID databases.
Subsequently, DAVID was used to perform analysis in the KEGG database and gene
annotation (GO) [71, 109, 200]. The major genes were selected according to their
level of connectivity and depicted using Metaphase software [221].

2.2.2 - Prediction of candidate genes for congenital neutropenia

To predict candidate genes for congenital neutropenia, we took the following
steps.

First, we used the STRING database to obtain protein-protein interaction
(PPI1) data for PID and congenital neutropenia genes. The data include genomic
context, co-expression, and known and predicted interactions from previous data.
The minimum required interaction value was set at 0.4 [192].

Cytoscape (version 3.5.1) was used to estimate gene network density
(Dnetwork) and biological distance for congenital neutropenia genes and other
primary immunodeficiency genes [58]. Density (Dnetwork) is the most widely used
concept in gene regulation and the study of networks of protein-protein interactions
(PPIs) and can be used to determine whether a network is dense or not. Network

density (Dnetwork) is determined by the formula [88].

"
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where aij is pairwise adjacency, > represents connectivity (network
connectivity equals unweighted network connectivity equal to the number of genes
that directly the i-th gene), and n is the number of genes in the network.

Note that aij = 1 if gene i and gene j interact in the STRING database, whereas
aij = 0 otherwise.

Congenital neutropenia PPl group data (based on the published 32 congenital
neutropenia genes) and ten random groups (each group consists of 41 PID genes)
were respectively converted into a symmetric adjacency matrix (aij, i, j =1, [1In)
using the "igraph” R package [55].

The network density was used to compare their functional cohesion and
proximity. The higher the network density in a group, the closer the interaction of
genes in the group. The concept of biological distance (Bi,j) was first introduced by
Ethan J. et al. in 2013. With biological distance, researchers studying the functional
relationships of genes in a network of genomic interactions do not mean the actual
distance between genes in a DNA molecule or on a chromosome, but rather the
functional proximity between pairs of genes or within a group of genes [201].

Using the value of biological distance, Itan Y. et al. showed that primary
immunodeficiency genes are usually located in the center of the human genomic
network and form several closely related subgroups according to different biological

mechanisms [107,201]. Biological distance (Bi,j) is determined by the formula:
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where Si,j is the combined index between gene i and gene j obtained from the
STRING database, and C is the number of direct connections between gene i and the
desired gene. The smaller the biological distance between the groups, the closer the
biological relationship between the genes in the group.

The biological distance of a group of known congenital neutropenia genes (32

genes) and two random groups of PID genes (each group consisted of 41 PID genes)
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was calculated using the Python package for Human Gene Conectome (HGC),
provided by Y. Itan et al., 2015 [107].

Using the "igraph™ R package, congenital neutropenia group PPI data and 10
random groups (each with 41 PID genes) were transformed into a symmetric
adjacency matrix (aij, 1 j =1, n) [55]. Network cohesion or density was determined
using network density analysis (a higher network density represents a closer
interaction of genes in the group).

Further, the biological distance between genes (Bij) was estimated,
which can be used to calculate the shortest functional distances between all possible
pairs of human genes [201].

The calculation of the biological distance between the congenital neutropenia
gene group (31 genes) and two random PID groups (41 PID genes in each) was
performed using the Human Gene Connectome (HGC) tool in Python [201].

The direct search for candidate genes after the preparatory steps was
performed in three ways.

1) A Pearson correlation analysis (PCC) was performed to assess the
expression of 31 congenital neutropenia genes and each protein-coding gene (or
candidate gene) based on data sets GSE142347 and GSE6322 (Downloaded from
NCBI using GEO transcriptomic profiles of congenital neutropenia patients). |r[>0.9
and p<0.05 were used.

2) PPI data for all human protein-coding genes were obtained from J. Cheng
et al, 2006 [40], including 217160 interactions provided by eleven databases such as
BioGRID [29], HI-lI-14_Net [19], HPRD [91], Instruct [101], InnateDB [100],
IntAct [102], MINT [205], PINA [160], SignaLink2.0 [191], KinomeNetworkX
[172] and PhosphositePlus [118]. The candidate gene was then conserved if the
interaction between the congenital neutropenia gene and the candidate gene from the
previous step was found in the PPI data.

3) Kyoto Gene and Genome Encyclopedia (KEGG) analysis was performed
using the R package "clusterProfiler"” to evaluate the biological function enrichment
of congenital neutropenia genes [217]. KEGG analysis was then performed for the
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remaining candidate genes for congenital neutropenia. A gene was defined as a true
congenital neutropenia candidate gene if it was enriched in the same pathway as the
congenital neutropenia gene.

To determine whether our method is suitable for predicting congenital
neutropenia candidate genes, we calculated the biological distances (Bi, j) of the
predicted candidate genes and compared them with 32 known congenital
neutropenia genes. A "functional genomic alignment" (FGA) and phylogenetic
cluster analysis were then performed. These steps were performed using the APE
package available in R to assess the biological correlation between candidate genes
and known genes [152, 201]. Specifically, we first created a biological distance
matrix between congenital neutropenia genes and congenital neutropenia candidate
genes, and then applied a neighbor-joining algorithm (function nj) to create a
phylogenetic fan tree showing a hierarchical clustering of known and congenital
neutropenia candidate genes. If the candidate genes were evenly distributed
throughout the range of known congenital neutropenia genes, this meant that these
candidate genes were closely related to the known genes. If the candidate genes and
known genes were separated into two or more groups, it meant the opposite.

Using the R package "limma," we searched for genes with differences in
expression between patients with congenital neutropenia HC and healthy controls
and showed a |log 2|-fold change. Values were taken as cutoff (Threshold) > 0.4 and
P-value <0.05 [120]. Data overlap between information on differentially expressed
genes obtained from analysis of the GSE142347 and GSE6322 datasets was

determined using a Venn diagram in the R package [39].

2.2.3 - Sequence evaluation of nonsynonymous single nucleotide
substitutions (missense-SNP) of CCBE1, FAT4, ADAMTS3, TCIRG1, ELANE

genes and prediction of pathogenicity of substitutions

We used various in silico tools to test the functional evaluation of the listed
immune sietm genes with nsSNPs of pathological or benign nature. We used the
following tools: SIFT [145], POLYPHEN-2 [70] PROVEAN [42], FATHMM [69],
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LRT [215], M-CAP [125], VEST3 [59], CAAD [52], MetaLR [176], Mutation
Assessor [105], MutationTaster [135, 141], and FATHMM-MKL [22], SNP&GO,
PhD-SNP [77], PANTHER [150], SNAP2 [82]. All of these tools were available
through VarCard [212] and MutPred [99].

SIFT (Sorting Intolerant From Tolerant) is a bioinformatics algorithm used to
predict the possible effect of amino acid substitutions on protein function. The
algorithm works by comparing an amino acid at a given position in a protein
sequence with a set of related protein sequences and estimating how much of the
amino acid is conserved in different species.

The SIFT algorithm calculates a score for each amino acid substitution
ranging from O to 1. A score of 0 means that the substitution is highly likely to be
harmful, while a score of 1 means that the substitution is likely benign. To sort gene
variants into pathological and benign, the threshold value in SIFT was set at >0.5
(Figure 7).

SIFT results (dbSNP)
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Figure 7 - An example of presenting the results of SNP pathogenicity analysis in
SIFT

PolyPhen-2 (Polymorphism Phenotyping v2) is a bioinformatics tool used to
predict the possible functional impact of an amino acid substitution in a protein. The
algorithm analyzes the amino acid sequence of the protein, the position of the
variant, and the properties of the amino acids involved in the substitution to predict

whether the substitution will be damaging or benign.
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PolyPhen-2 uses a combination of evolutionary conservation and structural
information to make predictions. First, the algorithm aligns the amino acid sequence
of the protein with those of other related species to determine which amino acids are
highly conserved and therefore may be functionally important. The algorithm then
uses a number of structural characteristics, including solvent availability and the
presence of hydrogen bonds, to predict the effect of amino acid substitution on
protein structure and function.

The output of PolyPhen-2 is a prediction of the functional impact of the amino
acid substitution, which is expressed as a score from 0 to 1. Variants with a score of
more than 0.5 are considered harmful, and variants with a score of less than 0.5 are
considered benign. PolyPhen-2 has shown high accuracy in predicting the effect of
amino acid substitutions, which makes it a useful tool for researchers studying the

effects of genetic variations on protein function [70, 92] (Figure 8).

POIVPhen'Z prediction of functional effects of human nsSNPs

PolyPhen-2 report for QGUXH8 C102S (rs121908251)
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Figure 8 - Example of a presentation of the results of SNP pathogenicity analysis
in PolyPhen-2

VarCards is a bioinformatics tool used to analyze genetic variants and predict
their potential impact on human health. It combines data from a variety of sources,

including public databases, the literature, and experimental data, to provide
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comprehensive information about genetic variants and their potential clinical
significance.

The VarCards algorithm works in several steps:

1) Collecting variant data: First, the algorithm collects information about
genetic variants from various sources, including public databases such as doSNP and
ClinVar, as well as literature and experimental data.

2) Variant annotation: The algorithm annotates variants with information
about their genomic location, functional impact and frequency in the population.
This information is taken from various sources, including Ensembl, dobNSFP, and
ExXAC.

3) Prediction of pathogenicity: The algorithm uses various computational
tools, such as SIFT and PolyPhen-2, to predict the potential effect of each variant on
protein function and estimate its effect on changes in protein function.

4) Association with diseases: The algorithm also integrates information about
the association of each variant with human diseases from various sources, including
the Human Gene Mutation Database (HGMD), ClinVar, and PubMed.

5) Clinical interpretation: Finally, the algorithm provides clinical
interpretation of each variant, including its potential pathogenicity, association with
diseases and relevance to specific clinical conditions.

VarCards provides a user-friendly interface for querying and analyzing
genetic variants, as well as a customizable pipeline for integrating additional data
sources and analysis tools. It is widely used in clinical and research settings to
analyze genetic variants and identify potential disease-causing mutations.

We have used VarCARD for the results of tools such as: LRT, Mutation
Taster, Mutation Accessor, PROVEAN, FATHMM, VEST3, MTA SVM,
METALR, M-CAP, CADD, DANN, FATHMM-MKK, PhD-SNP, PANTHER,
SNP-GO, P-MUT [212] (Figure 9).

The threshold values for the aforementioned tools were as follows: Mutation
Taster: <0.5; CADD: >15; MetaLR: >0.5; M-Cap: >0.025; PANTHER: probably
damaging at time > 450my, possibly damaging (less likely) at 450my > time >
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200my, likely benign at time < 200my; VEST3: >0.5; LRT: >0.001; PROVEAN: >-
2.667; FATHMM-MKK: <0.5; PhDSNP: >0.5; SNP-GO: >0.5; SNAP2: scale from
-100 (completely neutral) to +100 (strong effect); DANN: >0.5; Mutation Assessor:

>0.65 (from -5.545 to 5.975, with higher values indicating greater damaging effects);
FATHMM: >0.453; PON-P2: >0.5.
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Figure 9 - An example of presenting the results of SNP pathogenicity analysis in
VarCards

The online tool MutPred (http://mutpred.mutdb.org/) is used as a search tool

for predicting the molecular basis of disease associated with amino acid substitution
in a mutant protein. It employs several attributes related to the structure, function,
and evolution of the protein. MutPred uses three other services - PSI-BLAST, SIFT,
and Pfam - as well as algorithms TMHMM, MARCOIL, and DisProt. This allows
for the prediction of most structural damage and achieves even greater prediction

accuracy by combining the ratings of all three services [99].

2.2.4 - Assessment of nsSNP effects of CCBEl, FAT4, ADAMTSS3,

TCIRGL1, ELANE genes using in silico tools on protein structure and function

The Mupro method uses support vector machine learning to predict protein
stability changes in single-amino acid mutations using both sequence and structural

information, as does the IMutant 3.0 method.


http://mutpred.mutdb.org/
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IMutant 3.0 is a web server that predicts the effect of single point mutations
on protein stability and produces an estimate indicating the probability of
destabilizing or stabilizing the mutation. The algorithm is based on a support vector
method (SVM) trained on a large data set of experimentally characterized mutants
to predict the effect of a mutation on protein stability. The SVM model is trained to
distinguish between stabilizing and destabilizing mutations based on the extracted
features.

IMutant 3.0 has shown high accuracy in predicting the effect of single-point
mutations on protein stability, making it a useful tool for researchers studying the
effects of genetic variations on protein function. The algorithm can be used for a
wide range of applications, including the construction of stable and functional
proteins and the detection of disease-causing mutations.

Some methods use sequence conservation of certain amino acids in a sequence
family or look for certain features of the protein structure to predict whether the
substitution affects the function of the protein. Amino acid substitutions caused by
nsSNPs can alter the stability of the native protein, which can lead to effects on the
protein and ultimately to disease [40].

Using the met classifier, iStable 2.0, we predicted changes caused by nsSNP
missense substitutions on protein stability. The met classifier uses machine learning
and investigates whether protein stability increases or decreases. This is due to
amino acid substitution, which is based on the prediction of 8 structural (I-Mutant
3.0, CUPSAT, PoPMuSIiC, AUTO-MUTE2.0, SDM, DUET, mCSM, MAESTRO
and SDM2) and 3 sequential (I-Mu-tant2.0, MUpro and iPTREESTAB) protein
stability prediction tools. A 4-letter PDB code or FASTA-formatted protein
sequence is used as input, but the structural predictor achieves better performance
than the sequential one. The iStable 2.0 can be found on the Web server at
http://ncblab.nchu.edu.tw/iStable2. [106]. [-Mutant 3.0
https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I1-Mutant3.0.cqi).

The AAG Mut dataset from Pro Therm was used to pre-train the algorithm.
The value of AAG (kcal/mol) can be used to identify a single-site mutation that


https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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depends on the structure or sequence of the protein. A AAG value less than zero
indicates that the variant changes the structure or sequence of the protein [35].

Project HOPE was used in the ELANE study to assess the structural
consequences of the substitution sought. Project HOPE is a web server
(https://www.projecthope.org/) that proposes to estimate the altered protein in the
observed 3D structure in interaction with UniProt and the 3DAS prediction
algorithm. The protein sequence is used as an input source in Project HOPE and then
a structural comparison is made with the wild type.

In addition, the secondary structure of the ELANE protein was evaluated
using the SOPMA program [74]. This is a more sophisticated version of the self-
optimized prediction method (SOPM), which can predict the secondary structure
(helix, turn and twist) of 69.5% of amino acids in a database of 126 non-homologous
(less than 25% homologous) protein chains. SOPMA and the neural network
approach (PhD) correctly predict 82.2% of residues and 74% of amino acids

predicted when used together.

2.25 - Assessment of the effect of nsSNPs on posttranslational

modification of immune system proteins

The effect of amino acid substitutions at sites affecting posttranslational
modification of a protein was assessed to predict changes in its structure and function
[4, 143]. Software available online, GPSMSP v3.0 (https://msp.
biocuckoo.org/online.php) was used to predict methylation sites.

We used NetPhos 3.177 (https://www.cbs.dtu.dk/services/NetPhos/) [156]
and GPS 5.078 (https://gps.biocuckoo.cn/) [76] to predict potential phosphorylation
sites. The NetPhos 3.1 service predicts serine, threonine, and tyrosine
phosphorylation sites in proteins using ensembles of neural networks.
Phosphorylation sites with a score greater than 0.5 are more likely to be
phosphorylated [31].

We used GPSMSP 1.0 (https://msp.biocuckoo.org/), BDMPUB
(https://www.bdmpub.biocuckoo.org), and UbPred [93] (https://www.ubpred.org)
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to evaluate potential methylation and ubiquitination sites. NetOglyc4.0 additionally
predicts glycosylation sites using glycosylation [162]
(https://www.cbs.dtu.dk/services/ NetOGlyc/). Glycosylation sites with a score
greater than 0.5 are more likely to be glycosylated.

2.2.6 - Assessment of the effect of nsSNPs on functionally different regions

of immune system proteins

Conservation analysis is a bioinformatics method used to identify functionally
important regions in protein structures by analyzing evolutionary conservation in
related protein sequences. The method is based on the principle that evolutionarily
conserved regions in protein structures are likely to be functionally important, while
variant regions are likely to be less important for protein function. A neural network
algorithm and corresponding web service Consurf [53] were used for conservation
analysis.

The algorithm converts the estimated rate of evolution into a conservation
score relative to other related protein sequences, which typically ranges from 1 (high
variability) to 9 (high conservation). Conservation scores are then plotted on the
protein structure to identify conserved and variant regions. This can be visualized
using various tools such as PyMOL or Chimera.

Conservation analysis can be used to identify functionally important regions
in protein structures such as active sites, binding sites, and structural domains. It can
also be used to study the evolution of protein function and to design experiments to
verify the functional importance of certain regions in the protein structure.

Based on the location and functional importance of different regions of the
protein, the amino acid sites in a protein can be divided into several categories,
including functional, open, buried, and structural residues.

Functional residues are amino acids that contribute directly to the function of
the protein, such as active sites, binding sites, or catalytic residues. Functional
residues tend to be highly conserved in related proteins and are often located on the

surface of the protein where they can interact with other molecules.
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Open residues are amino acids that are located on the surface of the protein
and are accessible to the environment. Open residues can play a role in protein-
protein interactions, ligand binding, and other functions requiring interaction with
the external environment.

Buried residues are amino acids that are located in the interior of the protein
and are inaccessible to the environment. Buried residues play an important role in
maintaining the overall structure and stability of the protein because they participate
in the formation of the protein core.

Structural residues are amino acids that are not directly involved in the
functioning of the protein, but are important for maintaining its structure and
stability. Structural residues include those that form the secondary structure of the
protein, such as alpha-helices and beta-sheets, and those that contribute to the overall
stability of the protein, such as disulfide bonds.

Classification of amino acids according to these categories can provide insight
into the structure and function of the protein, as well as its evolutionary history and

potential for engineering or modification.

2.2.7 - Construction of a 3D model of the structure of immune system

proteins to identify the influence of amino acid substitutions

The data source to obtain the wild-type (original) protein sequence was the
UniProt database (Universal Protein Resource, https://www.uniprot.org/), an online
database of protein sequences and functional information about proteins that is freely
available. UniProt is a centralized repository of protein sequences, annotations, and
other related information that comes from various databases [171].

Prediction of three-dimensional protein models in order to further compare
three-dimensional models of wild (original) types and mutant (altered) types of
proteins was performed by their 3D modeling (in Phyre2, I-Tasser, HHpred and
AlphaFold2 programs), structure overlay, comparison and further by molecular
dynamics simulation (MDS). These programs resulted in .pdb files containing the

coordinates of atoms in 3D space [154].
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At the same time, the programs HHpred and AlphaFold2 allow MDS without
the use of third-party applications from Schrodinger, which will be discussed below,
and allow to estimate the standard deviation (RMSD) of the distances between the
carbon bases of natural and mutant models over time.

The HHPred (Homology Detection and Structure Prediction by Hidden
Markov Model Comparison) application is a bioinformatics tool that uses a Hidden
Markov Model (HMM) profile comparison to identify homologous sequences and
predict protein structure. The HHPred algorithm compares the target sequence with
a database of HMMs derived from protein families in the Pfam database to identify
homologous sequences and predict protein structure.

HHPred is a widely used tool for protein structure prediction and is highly
accurate and successful in identifying homologous sequences and in predicting
protein structure. It is particularly informative for the study of proteins that do not
have significant sequence similarity with proteins with known structures. HHPred is
freely available as a web server and can be used to predict the structure and function
of a wide range of proteins.

AlphaFold 2 is a deep neural network-based protein structure prediction
software developed by DeepMind's artificial intelligence research group. AlphaFold
2 uses deep learning techniques to predict the 3D structure of proteins with high
accuracy, reaching, in some cases, accuracy close to the atomic level. The software
has been used by Jumper J. et al., 2021, to predict the structure of many proteins,
including those involved in diseases such as COVID-19, and has the potential to
accelerate drug discovery and protein development. AlphaFold 2 was released as an
open-source tool, making it freely available to researchers worldwide [85].

Phyre2 is a set of tools available online to predict and analyze protein
structure, function, and mutations. The main goal of Phyre2 is to provide biologists
with a simple and intuitive interface to state-of-the-art protein bioinformatics tools
[207].

I-Tasser, the Iterative Thread Assembly Refinement Server, is an integrated
platform for automated prediction of protein structure and function based on the
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sequence-structure-function paradigm. Starting from the amino acid sequence, I-
TASSER first generates three-dimensional (3D) atomic models based on multi-
threaded alignment and iterative structural assembly modeling. Protein function is
determined by structurally comparing the 3D models to other known proteins. The
result of a typical server contains predictions of the full-length secondary and tertiary
structure as well as functional annotations on ligand binding sites, enzyme
commission numbers and Gene Ontology terms. An estimate of the accuracy of the
predictions is provided based on the confidence score of the simulation. This
protocol provides new insights and guidelines for the design of server systems for
state-of-the-art predictions of protein structure and function. The server is available
at http://zhanglab.ccmb.med.umich.edu/I-TASSER [182].

The resulting .pdb files were visualized in PyMOL, Chimera, and the online
service Discovert Studio.

Chimera UCSF is a program for interactive visualization and analysis of
molecular structures and related data, including density maps, trajectories, and
sequence alignments [210]. PyMOL is a cross-platform molecular graphics tool and
is widely used for 3D visualization of macromolecules.

The capabilities of PyMOL have been greatly extended by various plug-ins,
including macromolecular analysis, homology modeling, protein-ligand docking,
pharmacophore modeling, VS and MD modeling. We used the programming
languages R and Python to access these programs.

Discovert Studio (https://discover.3ds.com/) is a program for molecular
modeling and various ways of 3D visualization of the resulting models.

In the study of ELANE proteins, calculation of differences between models
of wild-type and mutant versions of the proteins after creating models in Phyre2 and
I-Tasser was performed using Zhanggroup online service
(https://zhanggroup.org/TM-score/, University of Michigan Medical School, USA).

Validation of 3D models was performed using PROCHECK and the

Ramachandran plot service.
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PROCHECK is a program used to validate the three-dimensional structures
of proteins. It was developed by Roman Laskowski at the European Bioinformatics
Institute (EBI) and is now widely used in structural biology.

PROCHECK analyzes protein structures in terms of their geometry, including
bond lengths, bond angles and torsion angles, and compares them with ideal values
for well-functioning structures. The program generates a series of graphical results
that summarize the quality of the structure and highlight any areas that may be
problematic [170].

Ramachandran plots serve as an indirect tool to check the stereochemistry and
geometry of the complex by establishing that none of the geometries are in the
forbidden electrostatically unfavorable regions of the plot [170, 173]. This online
service applying this method was used in the work:
https://swift.cmbi.umcn.nl/servers/html/ramaplot.ntml (Netherlands).

A similar method that complements the simulation results is MolProbity. It is
a web-based all-atom structure validation application for macromolecular
crystallography that integrates validation programs from the Richardson lab at Duke
University designed to assess the quality of three-dimensional protein structures.

One of the main features of MolProbity is the Ramachandran graph analysis,
which examines the torsion angles of the main chain of the protein structure and
compares them to the expected values for a properly coiled protein. The program
also assesses the quality of the protein geometry, including bond lengths, angles and
non-bonding interactions, and identifies potential collisions or steric overlaps. In
addition, MolProbity includes tools to assess the consistency of a protein's structure
with experimental data, such as electron density maps or nuclear magnetic resonance
data. The program also provides recommendations for optimizing the hydrogen bond
network in the protein structure and identifying potential errors in the placement of
ligands or other non-protein molecules.

In a simulated protein molecule, MolProbity identifies a favorable region, a

resolved region, and an outlier region, which correspond to different regions on the
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Ramachandran graph, which is a graphical representation of the torsion angles of the
main part of the protein structure.

The favorable region corresponds to the area of the diagram where most high-
quality protein structures are located. In this region, the torsion angles of the main
part are close to the ideal values for a well coiled protein, indicating a well-
functioning and stable structure.

The tolerable region is adjacent to the favorable region and represents an area
in which the base torsion angles are slightly less than ideal, but still acceptable.
Protein structures with torsional angles within this region are considered to be of
sufficient quality, although they may have some minor structural problems.

The outlier region is the area of the graph where the torsion angles of the main
part differ significantly from the ideal values, indicating a potentially unstable or
poorly folded protein structure. Protein structures with torsions in this region are
considered low quality and may require significant structural refinement or
correction,

Comparison of 3D models of wild-type and mutant variants of proteins was
performed taking into account the model comparison metric (TM-score).

TM-score (Template Modeling score) is a widely used metric for comparing
structural similarity between two protein structures. It is a measure of structural
similarity between two protein structures, taking into account both the standard
deviation (RMSD) of aligned residues and the length of the aligned region.

TM-score ranges from 0 to 1, with higher values indicating greater structural
similarity between the two proteins. A TM-score score of 1 indicates complete
structural similarity between the two proteins, while a TM-score score of 0 indicates

no structural similarity.

2.2.8 - Docking methods to study the effect of substitutions on the function
of immune system proteins analyzed
Protein docking analysis is the simulation of molecular interactions between

two proteins to determine which specific atoms of one protein bind to atoms of the
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other protein in three dimensions. This analysis can help understand how two
proteins can bind and which specific atoms are involved in this process.

The Discovery Studio and PyMol programs described earlier were used for
this purpose. Interactions between atoms at specific amino acid residues were
calculated to identify binding forces that were crucial in stabilizing the formation of
receptor-ligand complexes.

In addition, AutoDock (Scripps Research Institute) was used in the study of
the ELANE protein. AutoDock is designed to perform both rigid and flexible
docking simulations. In rigid docking, the protein remains stationary and only the
ligand can move during the simulation. In flexible docking, both the protein and
ligand can move during the simulation. This flexibility allows AutoDock to simulate

conformational changes in the protein that may occur during ligand binding [24].

2.2.9 - Molecular dynamics simulation to assess the pathogenicity of

newly identified nsSNPs

Molecular dynamics simulation (MDS) is a computer simulation technique
for analyzing the physical motion of atoms and molecules. Atoms and molecules are
allowed to interact for a fixed period of time, giving insight into the dynamic
"evolution" of the system. In the most common version, the trajectories of atoms and
molecules are determined by numerically solving Newton's equations of motion for
a system of interacting particles, with the forces between particles and their potential
energies often calculated using the interatomic potentials or force fields of molecular
mechanics.

A particularly important application of molecular dynamics simulation is to
determine how a biomolecular system will respond to some perturbation. In each of
these cases, it is usually necessary to run several simulations of both the perturbed
and unperturbed system in order to identify consistent differences in the results.

Molecular dynamics simulations were performed using the packages Maestro
and Gromacs 4.5.3 from Schrédingern LLC [78].
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Maestro creates the preparation for the simulation, in particular, it adds
hydrogen atoms to the virtual environment, assigns hydrogen bonds, and minimizes
the energies of the molecule. In addition, a "dissolution” of the molecule is
performed.

Wild-type and mutant proteins were pretreated using Protein Preparation
Wizard in Maestro, which included optimization and complex minimization. A tool
available in the Maestro software package that is designed to preprocess protein
structures before performing molecular dynamics simulations. It automatically
optimizes the geometry of the protein structure, adds hydrogenic atoms, corrects
missing or incorrect atoms, removes water and ligands, creates an extended vacuum
layer around the protein, and more. All of these steps help eliminate possible
problems with the protein structure and prepare it for molecular dynamic
simulations. All systems were prepared using the System Builder tool. TIP3P, a
solvent model with an orthorhombic cell, was chosen. (Transferable Intermolecular
Interaction Potential 3 Points). The OPLS 2005 force field [196] was used in the
simulations. To make the models neutral, counter ions were introduced. To simulate
physiological conditions, 0.15 M sodium chloride (NaCl) was added. An NPT
ensemble with a temperature of 300 K and a pressure of 1 atm was chosen for the
entire simulation. The models were "relaxed" prior to simulation. The trajectories
were stored for study every 100 ps, and the stability of the simulations was checked
by comparing the standard deviation mean square (RMSD) of the protein and ligand
over time.

Gromacs produces the following simulation results:

1. Root Mean Square Deviation (RMSD) - a measure of structural
deviation over time compared to the structure at T=0 ns. RMSD is calculated by
measuring the average distance between atoms of two protein structures after
aligning them with each other. Alignment is usually performed by comparing the
positions of atoms in the backbone of the two structures. The value of RMSD reflects
the degree of deviation between the two structures, with smaller RMSD values

indicating greater similarity or coincidence.
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2. Root Mean Square Fluctuation (RMSF) - the mean square fluctuation
is a measure of the degree of mobility or flexibility of each atom or residue in the
protein structure. RMSF is calculated by taking the root mean square deviation of
each atom or residue in the protein structure from its mean position during a given
simulation or trajectory. The obtained RMSF values are a measure of the variability
or fluctuation of the position of each atom or residue, which can indicate the degree
of its mobility or flexibility.

3. Differences in the secondary structure of the protein.

4, Radius of gyration (Rg) - a measure of the "expansion™ of the protein.
The radius of gyration is calculated as the root mean square distance of all atoms in
the protein from the center of mass of the protein. Thus, an assessment is made of
the overall shape and compactness of the protein. Rg is influenced by various factors,
such as the size, shape, and flexibility of the protein. For example, a more compact
protein will have a smaller Rg value, while a more elongated or flexible protein will
have a larger Rg value. The Rg value can be used to monitor the stability and folding
of the protein over time during molecular dynamics simulations.

5. The number of hydrogen bonds formed between different groups of
atoms during molecular dynamics simulation. The most commonly used tool for
calculating hydrogen bonds in GROMACS is the "g_hbond" command, which
identifies hydrogen bonds between donor and acceptor groups of atoms based on
geometric criteria. In particular, the tool calculates distance and angle criteria for
each potential hydrogen bond and reports the number of hydrogen bonds that satisfy
these criteria.

6.  The Solvent Accessible Surface Area (SASA) is a measure of the
surface area of a protein or other biomolecule that is accessible to the surrounding
solvent. It is commonly used in molecular dynamics simulations to analyze the
conformational properties of proteins and their interactions with solvents. In
GROMACS, SASA is calculated as the surface area of the protein or other
biomolecule that is accessible to a probe sphere with a specified radius, typically a

water molecule. The calculation involves dividing the surface of the biomolecule
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into a grid of small triangles or squares and computing the area of each grid element
that is accessible to the solvent.

7. Principal Component Analysis (PCA) is a statistical method used in
molecular dynamics simulations to analyze the motion and conformational changes
of proteins and other biomolecules. PCA analysis is performed on trajectory files
obtained during molecular dynamics simulations. The first step in PCA analysis
involves constructing a covariance matrix from the atomic coordinates of the protein
or other biomolecule at each time step of the simulation. The covariance matrix is
then diagonalized to obtain a set of eigenvectors and eigenvalues that describe the
collective motions of the system. The results of PCA analysis can be used to
determine the most important collective motions of the protein or other biomolecule,
such as domain movements, loop bending or loop fluctuations. These motions can
provide insight into the functional properties of the protein, such as enzyme
catalysis, ligand binding or protein-protein interactions.

8. The Free Energy Landscape is a graphical representation of the free
energy of a system as a function of one or more collective variables, which are
typically chosen to describe important degrees of freedom of the system. It is a
powerful tool used in molecular dynamics simulations to study the thermodynamics
and kinetics of complex systems, such as protein folding, ligand binding, or
conformational changes. In GROMACS, free energy landscapes are often
constructed using the umbrella sampling method, which involves applying an
external biasing potential to constrain the system along the chosen collective
variable. Several simulations are then performed, each with a different value of the
biasing potential, to sample the entire range of the chosen collective variable.

The free energy of a system as a function of a chosen collective variable can
be obtained from the probability distribution of the collective variable, which is
estimated from data obtained from umbrella sampling simulations. This probability
distribution can be further analyzed using methods such as weighted histogram
analysis (WHAM) to obtain a landscape of free energy. The free energy landscape
can provide valuable information about the thermodynamics and kinetics of the
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system under investigation. For example, it can show stable and metastable states of
the system, barriers for conformational changes or ligand binding, as well as protein
folding or aggregation mechanisms.

The structure of the native and mutant Aurora-A kinase was used as a starting
point for the simulation of molecular dynamics in Maestro. Simulation parameters
were set according to our previous work performed for the Aurora-A protein and
other proteins. The systems were solvated (dissolved) in a rectangular box with
TIP3P water molecules with an edge radius of 10 A. The systems were neutralized
by adding 3 sodium ions (Na+) to the simulation field using the "genion" tool that
accompanies the Gromacs package. Energy minimization was performed over 5000
iterations using the conjugate gradient method using the GROMOS96 43al force
field. The Emtol convergence criterion, which serves as a measure of the stability of
the molecular dynamics, was set to 1000 kJ/mol/nm. The Berendsen temperature
coupling method was applied to regulate the temperature inside the simulation box.
This method ensures that the system temperature remains constant during the
simulation by adjusting the temperature of the box based on the instantaneous
temperature of the system.

Electrostatic interactions were calculated using the Ewald method with a
particle grid. The systems were simulated with position constraint for 5 ns and then
simulated without constraint for 200 ns. A comparative analysis of structural
deviations in the native and mutant structure was then performed. RMSD, RMSF,
SAS, and Rg were analyzed using the tools g_rms, g_rmsf, g_sas, and g_gyrate,
respectively. The number of individual hydrogen bonds (NHbonds) was calculated
using g_hbond.

In addition, we used g_densmap to obtain the atomic density distribution of
the native and mutant protein. All graphs were plotted using the Grace GUI toolbox
version 5.1.22. Next, we performed principal component analysis using the Essential
Dynamics (ED) method according to the protocol in the Gromacs software package.

This section is an abbreviated version of our previously published work.
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We used 100 nanoseconds, Desmond, software from Schrédingern LLC, was
used to simulate molecular dynamics. Integrating Newton's classical equation of
motion, MD simulations typically calculate the motion of atoms over time.
Simulations have been used to predict protein stability in a physiological
environment [86, 132, 185].

2.2.10 - Identification of possible genetic causes of disease in patients with
clinical diagnoses of "congenital neutropenia" and ""Hennekam syndrome"

Sequencing results were aligned to the standard human genome sequence
hg38 using the Burrows-Wheeler Aligner (BWA) program [119]. The SAM files
were then sorted, indexed and converted to BAM format using the SAMtools
program [203]. Single nucleotide variants (SNVs) and insertion/deletion (indel)
variants were identified using the Genome Analysis Toolkit version 4.1.2.0
(GATKA4, http://www.broadinstitute.org/gatk/) [199]. Only exonic variants with a

read depth (or coverage) >10x and a minimum mapping quality score of 30 were
retained using the VCFtools program to reduce the number of false calls due to
mapping errors [64, 204].

All synonymous SNVSs, indels without a shift in frame coordinates, and
variants with an exonic function annotated as "not applicable” or "unknown" were
discarded. Candidate SNVs and indels obtained from the previous steps were further
filtered for the presence of SNVs and indels in genes associated with primary
immunodeficiency (PID). Candidate SNVs (or indels) were then classified as less
common, rare or uncommon if the minor allele frequency (MAF) of the SNV (or
indel) was less than 0.01 in all data from the Exome Aggregation Consortium
(EXAC), 1000 Genomes (1000g), and the Genome Aggregation Database
(gnomAD). All SNVs (or indels) were considered pathogenic if they were
nominated as deleterious in at least one model from the following.

Functional analysis was performed using hidden Markov models
(FATHMM), protein variation effects analyzer (PROVEAN), and combined
annotation-dependent depletion (CADD). FATHMM and PROVEAN were
performed using the ANNOVAR program [206], and CADD was performed using


http://www.broadinstitute.org/gatk/
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an online server (https://cadd.gs.washington.edu/snv, version: GRCh38-v1.5). All

potentially pathogenic SNVs and indels were manually reviewed using the Single
Nucleotide Polymorphism Database (dbSNP) program
(https://www.ncbi.nlm.nih.gov/snp/) and Integrative Genome Viewer (IGV)
software version 2.4.5. If two MAFs of SNVs (or indels) obtained from ANNOVAR
and dbSNP were ambiguous, the MAF obtained from dbSNP was considered true.

A candidate mutation was considered true if the mutation identified by GATK4 was

confirmed using the Integrative Genomic Viewer (IGV) application.


https://cadd.gs.washington.edu/snv
https://www.ncbi.nlm.nih.gov/snp/
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CHAPTER 3 - EVALUATION OF GENE EXPRESSION DIFFERENCES
AND INVESTIGATION OF KEY SIGNALING PATHWAYS IN PATIENTS
WITH RBCK1 DEFICIENCY

To approach an understanding of the mechanisms underlying the pathogenesis
of this pathology, a comparative analysis of gene expression was conducted between
transcription data from patients with RBCK1 deficiency, CINCA/NOMID
syndrome, Muckle-Wells syndrome, MVK deficiency, and transcription data from
healthy children (Figure 10). Genes with differential expression obtained from the
analysis were annotated and functionally enriched, meaning information was
obtained about their role in organism functioning, the signaling pathways in which
these genes are involved, and the conditions under which they are expressed, based
on information obtained by other researchers.

From the dataset GSE40561, which includes a total of 48,803 genes from
different individuals, 380 genes with differential expression were detected: 229
genes had increased expression, while 151 genes had decreased expression.
Comparative analysis of transcription between samples from healthy individuals and
patients with RBCK1 deficiency showed the largest number of differentially
expressed genes (DEGS) - 119 genes with significantly reduced expression (Table
2). Inaddition, when comparing RBCK1 and MWS samples, a significant difference
in the relatively high expression of 142 genes was identified in RBCK1 deficiency
(Figure 10).

« CINCA/NOMID (n=2)

142 genes @~ [ . Muckle-\.N'eIIs syndrome (n=5)
* MVS deficiency(n=2)

—+ Healthy (n=41)
119 genes
g ",__ * RBCK1 deficiency (n=1)

log?FC, t-criteria Student, p<0,05

2291
519 380 genes

Figure 10 - Significant differences in gene expression in RBCK1 deficiency
compared to healthy individuals and patients with other autoimmune syndromes
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Table 2 - List of the top 10 most down-regulated and up-regulated genes in
RBCK1 deficiency compared to healthy samples

Downregulated genes expression Upregualted genes expression
Ne Genes p logFC | Ne | Genes p logFC
1 CISD2 7.537936e-18 | -0.5969954 11 HS:551123 | 6.458791¢-13 |  3.1687011
2 EPB41 4.108343e-16 | -0.6256048 2 | HS:552143 | 1.583777e-07 | 1.2937618
3 | LOC253012 | 5.739984e-16 | -0.6810695 31 F LJO0312 | 3.640115¢-07 | 1.6176159
41 FAMS83A | 1.703811e-13 | -0.7337758 41 HS:19339 | 6.034732e-07 | 0.4643016
5 - 5
NUP98 5.965986e-13 04364548 ANKMY 2 6.517125¢-06 | 0.4189648
6 6
CHDZ2 6.279939¢-12 04504437 RPS29 1.978019¢-05 | 0.4123195
7 7
RAP1GAP 1.338901e-11 0.9886351 HS:531457 | 7.585137¢-05 | 0.4194266
8 - 8
HS:563750 | 1.539916e-11 05622475 Hs:542923 0.000385 1.1559277
9 9
aBccl3 1.908913¢-11 05476611 HIST1HZBI 0.000278 0.9167271
10 MAOA 3.456357e-11 | -0.7114969 | 10 PLAZ2R1 0.000193 0.8924394

All non-expressed genes were removed, and a new principal component

analysis (PCA) diagram was created. The distribution of data before and after

normalization can be seen in the histograms (Figure 11) and boxplots (Figure 12). A

total of 532 DEGs (genes with altered expression) were obtained in our second

dataset GSE31064 after standardization of microarray results, among which 211

genes had decreased expression and 321 genes had increased expression.
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The next step was to determine the involvement of differentially expressed
genes in RBCK1 deficiency in key signaling pathways and evaluate their impact on

biological functions.

A

Gene Expression Distribution with Normal Curve (Before Normalization)
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Figure 11 - Histogram of the distribution of unprocessed expression data before
normalization (A) and after (B)
Note: The x-axis represents the raw expression values in arbitrary units, while
the y-axis represents the number of genes with a certain level of expression.
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Immune response, inflammatory response, and protein phosphorylation
pathways in the category of biological processes were overrepresented in GO and

pathways obtained from co-expressed gene clusters (Table 3, Figure 13).

A

Boxplot of data distribution (before normalization)
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Figure 12 - Boxplots of raw expression data before normalization (A) and after
normalization (B)
Note. On the x-axis - transcript samples, on the y-axis - the level of expression.
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Protein binding and RNA binding pathways were the most enriched in the
category of molecular functions. Finally, cytoplasm, cytosol, and nucleus were the
most enriched pathways in the category of cellular components. After uploading
identifiers of downregulated genes (with reduced expression) from the comparison
between healthy and RBCK1-deficient samples to the WikiPathways database, 425
signaling pathways were selected for analysis. Among those that stood out were
signaling pathways associated with the SARS-CoV-2 virus: WP5115, WP5039,
WP5098, of which 4 genes from our set - FAM83A, IF127, NUP98, and TSC1 were
identified. Additionally, it was found that the gene HP, which was in the group of
downregulated genes in the comparison between healthy and MWS samples, was
involved in a pathway related to COVID-19.

Protein binding and RNA binding pathways were the most enriched in the
category of molecular functions. Finally, cytoplasm, cytosol, and nucleus were the
most enriched pathways in the category of cellular components. After uploading the
identifiers of downregulated genes (with decreased expression) from the comparison
between healthy samples and RBCK1-deficient samples to the WikiPathways
database, 425 pathways were collected. Three most notable pathways were
associated with SARS-CoV-2 (COVID-19): WP5115, WP5039, WP5098, among
which 4 genes from our set, FAMB83A, IFI27, NUP98, and TSC1, were found. In
addition, it was found that the HP gene, which was in the downregulated gene group
in the comparison between healthy and MWS samples, was involved in a pathway
related to COVID-109.

Based on the clusters formed using cemiTool and previously identified DEGs,
30 individual protein-protein interaction graphs were generated. Only one graph,
which depicts the interaction between 54 proteins from one of the 14 cemiTool
clusters, showed statistical significance (Figure 14).

The subfamilies of lectin-like receptors of killer cells, namely KLRD1,
KLRC1, KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR3DL2, and KIR3DLS3,
had the closest interrelation in the protein interaction network. Compared to healthy



83

individuals and individuals with CINCA syndrome, a decrease in the expression of
several genes was detected.

Table 3 - Example of five GO annotations with the smallest false discovery
rate coefficient

. Description of GO (gene functions The . .

GO annotation : . proportion of | False discovery
cellular components, and biological

number annotated rate (FDR)
processes)

genes

GO-0071799 Cgllular_response to prostaglandin D 2/5 0.0125
stimulation.

G0:0021796 Regionalization of the cerebral cortex. 217 0.0162

GO 0030656 Regulation of vitamin metabolism 2/12 0.0349
process.

GO:0051712 Positive regulation _of killing of cells 213 0.0376
from another organism.

GO-0001829 E)elﬁfserentlatlon of trophoectodermal 9/15 0.0456

In addition, chemokine genes (CXCL8 and CXCL10) were particularly
highlighted because their activity deficiency can lead to serious errors in cell
functioning or cell death due to disruption of chemokine signaling. The p-value for

the enrichment of the PPI network created was 1.0e-16 (Figure 14).
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In the functional enrichment of differentially expressed genes in RBCK1
deficiency (compared to healthy individuals), involvement of these genes in several
significant signaling pathways was detected. In particular, signaling pathways for
leishmaniasis development, susceptibility to staphylococcal infection, cholera, NK
cell cytotoxicity, and various other pathways affecting the immune response were
involved. This does not mean that RBCK1 deficiency increases the probability of
the corresponding pathology, but it becomes clearer that the systemic influence of
the deficiency of one protein on various processes that somehow affect the immune

system and anti-infective defense (Tables 4 and 5).

C170rf97

QFGFBPZ —h CLA CX3CR1
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Figure 14 - Statistically significant protein-protein interactions among 54 proteins

based on the analysis results of the STRING service
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Table 4 - Groups of differentially expressed genes in RBCK1 deficiency
(compared to healthy individuals), involved in several significant signaling
pathways, obtained by functional enrichment analysis using the KEGG database

Intracellular Hematopoietic cell | Dilated Pantothenate | Vibrio

signaling, lineage cardiomyopathy and CoA cholerae
biosynthesis | infection

TIAM1 MME TPM3 VNNI TCIRGI

FOXO3 HLA-DRBS5 ACTGI UPBI ACTGI

STATI CDSB ITGBI VNN2 PRKACB

GNB4 ILIR? ITGA4 ZNF586

GRB2 CSF3R PRKACB VNN3

CXCL5 CD8A

PIK3CG ILIB

ROCK]

PIK3R1

VAV3

Table 5 - Groups of differentially expressed genes in RBCK1 deficiency
(compared to healthy individuals), involved in several significant signaling
pathways, obtained by functional enrichment analysis using the KEGG database

Processing Staphvlococcus RIG-I-like
NK cell-mediated and Lei . pny receptor
.. . eishmaniasis | aureus - .
cytotoxicity. presentation of infection signaling
antigen. pathway
KIR2DL3 KIR2DL3 FCGR24 FCGR24 CXCLS
KIR2DL1 KIR2DL1 PTGS2 KRT23 MAPKI3
KIR2DS5 KIR2DS)5 HLA-DRBS5 | FCGRIA CXCLI0
KIR3DL1 KIR3DL]1 FCGR3B FCAR ISG15
KLRDI1 KLRDI NCF4 FPR2
KLRC? KLRC? TLR2
KIR3DL?2 KIR3DL?2 ILIB
KIR2DS3 KIR2DS3 NCF2
KIR3DL3 KIR3DL3
KLRCI KIR2DL4
SH2DIB KLRCI
GZMB IFNG
FAS3LG
PRF]
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Thus, this chapter presents the results of a bioinformatic analysis conducted
to obtain information that helps to uncover the pathogenesis of the pathology in
patients with RBCK1 deficiency. Our previous studies have shown that 14 new
genes involved in ribosome biogenesis, rRNA processing, gene expression, mMRNA
processing, nuclear lumen, intracellular non-membrane-bound organelles,
nucleoplasm, small subunit processomes, antigen processing and presentation
pathway, and eukaryotic ribosome biogenesis may play a role in increased
susceptibility to viral infections such as influenza or herpes. In this syndrome, these
signaling pathways were not involved in the pathological process, which further
emphasizes the peculiarity of the RBCK1 deficiency pathogenesis and coincides
with observations of increased susceptibility specifically to bacterial infections.

Regarding the antiviral activity of the immune response in RBCK1-deficient
patients, according to clinical data, increased susceptibility to them is a rare case.
Our study demonstrated the involvement of the signaling pathway responsible for
the response to coronavirus infection. However, it was not proven that RBCK1-
deficient patients are at risk of COVID-19. This can be explained by the
ubiquitination of interferon regulatory factor 3, an important signaling molecule
associated with Toll/IL-1R domain-containing adapter inducing IFN and TLR 3.

As a result of the studies, a highly reliable decrease in CISD2 gene expression
was detected in this patient with RBCK1 deficiency. It is known that a defect in
CISD2 leads to endoplasmic reticulum stress and apoptosis [44], including
peripheral blood mononuclear cells. Considering the close functional relationship of
this protein with apoptosis and cellular stress processes, it can be assumed that the
influence of low expression of this gene on the pathogenesis has a negative effect on
the stability of peripheral blood mononuclear cells to apoptosis and cell death.

However, changes in the activity of mTOR, PI3SK/AKT, Rho, and Nf-kB
signaling pathway genes directly or indirectly affect the expression of genes in the
immune system. All the differences in gene expression found do not explain the

immediate cause of increased susceptibility to pyogenic infections, but they reveal
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some aspects of molecular interactions, allowing us to better understand the
pathogenesis of RBCK1 deficiency.
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CHAPTER 4 - INVESTIGATION OF THE IMPACT OF IDENTIFIED
NON-SYNONYMOUS SINGLE NUCLEOTIDE VARIANTS IN THE
ELANE AND TCIRG1 GENES ON THE STRUCTURE AND FUNCTION
OF THE ELANE AND TCIRG1 PROTEINS

Congenital neutropenia syndromes are a group of rare diseases that manifest
from birth and are characterized by low levels of neutrophils, which are necessary
to fight infections. The most common and serious immunodeficiency associated with
congenital neutropenia is severe congenital neutropenia, a rare blood disorder that,
according to Donadieu J. et al., 2013, affects approximately 1 in 100,000 people of
European descent, many cases of which are inherited in an autosomal dominant
pattern [65]. Despite several causal genes being identified, the genetic basis of >30%
of cases remains unknown.

Approximately half of all cases of severe congenital neutropenia are caused
by variants in the ELANE gene. Only a small percentage of cases of this disorder
are attributed to other related genes, including TCIRG1.

This study provides data on nsSNPs in the TCIRG1 and ELANE genes
obtained from the online NCBI dbSNP database, as well as data on nsSNPs for the
TCIRG1 gene from NGS data of one patient, analyzed using bioinformatics
methods, including in silico modeling and simulation of molecular dynamics, which
allowed for the identification of their potential destabilization of the structure and
function of the TCIRG1 and ELANE proteins.

4.1 - Determining the harmfulness of non-synonymous single nucleotide
substitutions using SIFT and PolyPhen-2 tools in the TCIRG1 and ELANE

genes

The NCBI database reports 5627 SNPs in the TCIRG1 gene. The first step
was to select only those polymorphisms that cause amino acid substitutions. It was

found that less than 2% of the substitutions, 811 out of 5627, are non-synonymous
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coding (missense) substitutions (NsSNPs). In the ELANE gene, only 301 nsSNPs
out of 3646 SNPs were identified.

The programs SIFT and PolyPhen-2 calculate the impact of nsSSNPs on protein
function and evaluate whether the induced amino acid is acceptable at a specific
location. SIFT classifies each nsSSNP based on scores, and those with scores below
a threshold are deemed "tolerated” or benign, while those with scores above the
threshold are considered "damaging" or deleterious. For SIFT, the threshold for
classification as damaging nsSNP was determined as a score of >0.5.

In the TCIRGL1 gene, the SIFT program predicted 118 potentially deleterious
nsSNPs, PolyPhen-2 predicted 64, and the mutually intersecting results of the
combined analysis allowed only 34 nsSNPs to be selected that resulted in amino acid
substitutions out of the total of 811 nsSNPs. Table 6 shows a portion of the obtained
analysis results.

For substitutions in the ELANE gene, the SIFT program identified 21 nsSNPs
as deleterious polymorphisms, while the combined analysis of SIFT and PolyPhen-
2 only indicated 8 nsSNPs as deleterious out of the total of 301 nsSNPs (Table 7).

To confirm the deleteriousness of the polymorphisms selected through SIFT
and PolyPhen-2, additional in silico tools were used.

The results of predicting the pathogenicity of significant nsSNPs in the
TCIRGL1 gene using 17 additional analysis tools are presented in Figure 15 and Table
8.
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Table 6 — Deleterious/Damaging non-synonymous single nucleotide
polymorphisms (nsSNP) in the TCIRG1 gene based on the results of SIFT and
PolyPhen-2 analysis

ID nsSNP AA. SIFT Score PolyPhen-2 | Score
rs36027301 | R56W Del 0 Pd 0.999
rs368945298 | M546V Del 0 Pd 0.999
rs115854062 | P572L Del 0 Pd 1
rs150260808 | 721N Del 0 Pd 1
rs137853150 | G405R Del 0 Pd 1
rs137853151 | R444L Del 0 Pd 1
rs147580611 | F610S Del 0 Pd 1.00
rs148921764 | E722K Del 0 Pd 1.00
rs140963213 | A417T Del 0.002 Pd 1
rs144775787 | A778V Del 0.46 Pd 0.883
rs145080707 | R213W Low 0.012 Pd 1
rs150648332 | R57H Del 0.001 Pd 1.00
rs150260808 | 721N Del 0 Pd 1
rs201329219 | R109W Del 0.014 Pd 1.00
rs367703865 | R191H Del 0.32 Pd 0.999
rs371214361 | S532C Del 0.001 Pd 1.00
rs199914625 | S474W Del 0 Pd 1
rs200851583 | G458S Del 0 Pd 1
rs371658110 | G192S Del 0.003 Pd 1.00
rs370319355 | R50C Del 0 Pd 1
rs376351835 | F529L Del 0.013 Pd 1.00
rs371004297 | G379S Del 0.011 Pd 1.00
rs200209146 | N730S Del 0.022 Pd 1.00
rs200415611 | V375M Del 0.001 Pd 1.00
Note: nsSNP ID - identifier of non-synonymous single nucleotide

polymorphism, A.A. - position of amino acid, Del - high probability of pathogenicity
of mutation; Low - low probability of pathogenicity of mutation, Pd - predicted
probable pathogenicity of mutation.
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Table 7 - Deleterious/Damaging nonsynonymous single nucleotide
polymorphisms (nsSNPs) in the ELANE gene based on the analysis results in SIFT
and PolyPhen-2

ID nsSNP AA SIFT | Score | PolyPhen- | Score | Allelic Frequancy
2
rs201163886 | R34W | Del | 0.002 | Pd 1
rs28931611 | C71R |Del |0 Pd 1 6.076e-06
rs137854449 | V101M | Del 0.005 |Pd 0.964
rs137854448 | P139L |Del |0 Pd 1
rs199558534 | R143C |Del | 0.048 |Pd 1
rs57246956 | C151Y |[Del |0 Pd 1
rs201788817 | A166T |Del | 0.33 |Pd 0.976
rs199891906 | Al166V |Del | 0.23 |Pd 0.582
rs193141883 | T175M | Del | 0.008 |Pd 1 gnomAD_exome
0.0005
rs200449787 | R182H |Del | 0.015 |Pd 1
rs367663236 | V190M | Del | 0.047 |Pd 1
rs201723157 | R193W | Del | 0.006 |Pd 1
rs201139487 | G203S |Del |0 Pd 1 4.094e-06
rs137854446 | L206F |Del |0 Pd 1
rs201664319 | N209K |Del | 0.03 |Pd 0.983
rs140880838 | G210R |Del | 0.019 |Pd 1
rs137854451 | G214R | Del 0.002 |Pd 1
rs200384291 | F218L | Del 0.011 |Pd 0.998
Note: nsSNP ID - identifier of non-synonymous single nucleotide

polymorphism, A.A. - position of amino acid, Del - high probability of pathogenicity
of mutation; Low - low probability of pathogenicity of mutation, Pd - predicted
probable pathogenicity of mutation.

All of the listed amino acid substitutions were predicted to be deleterious by
the majority of algorithms (FATHMM-MKL, SNP-GO, PHD-SNP, PANTHER,
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SNAP2, P-MUT PROVEAN, FATHMM, LRT, M-CAP, CAAD, META SVM,
METALR, Mutation Assessor, and Mutation Taster) used in this study. Each of the
algorithms used in this study has its unique threshold and evaluation criterion to
determine the pathogenicity or tolerability of the substitution.

For the TCIRG1 gene, the combination of SIFT and VEST 3 algorithms
identified only 6 nsSNPs (10% of the previously selected ones) as deleterious, while
51 were classified as tolerable. PolyPhen-2, FATHMM, M-CAP, and PANTHER
showed the highest percentage of deleterious predictions. When using the SNAP2
method, 41 substitutions were considered deleterious (71%), while 16 predictions
had no effect (SNAP2 score of 100). PANTHER was used to predict the impact of
54 (92%) nsSNPs on the TCIRG1 protein, and 48 nsSNPs were likely to have a
damaging effect, 6 nsSNPs might have a possibly damaging effect, and 3 nsSNPs
were likely to be benign. Specifically, those with a time greater than 450 ms were
classified as possibly damaging, those with a time between 450 ms and 200 ms were
classified as likely benign, and those with a time less than 200 ms were not classified.

The PROVEAN program, designed to predict the impact of SNPs on protein
function, identified 22 (38%) nsSNPs in the TCIRG1 gene as significantly
deleterious (with respect to their impact on the structure and function of the protein),
while 35 nsSNPs were classified as neutral based on the PROVEAN threshold
criteria (> -2.667). Using the threshold (> 0.65, from 5.545 to 5.975), the mutation
evaluator classified 24 nsSNPs as deleterious, of which 12 were classified as high,
17 as moderate, 5 as low, and 19 were not detected.

FATHNMM and FATHMM-MKK (<0.5), CADD (>15), DANN (>0.5),
Mutation Taster (<0.5), and their respective scores predict more than 75-90% of
nsSNPs as deleterious/damaging. P-Mut predicts 45 (75.21%) deleterious, 7 neutral,
and data were missing for 5 nsSNPs with the threshold (<0.5). LRT predicts 42
(77%) deleterious nsSNPs with a result (>0.001) and 13 neutral ones. PhD-SNP,
SNP-GO, and M-CAP identified 47 (82%), 35 (61%), and 54 (94.73%) nsSNPs as
deleterious, respectively. Additionally, MetalR and MTA-SVM identified 10 (17%)
and 37 (64%) nsSNPs as deleterious, respectively (Figure 15).
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In conclusion, based on the evaluation of substitution positions using
PANTHER, PROVEAN score, SIFT score, SNP&GO, FATHMM, LRT, M-CAP,
VEST3, CAAD, METALR, Mutation Assessor, Mutation Taster, FATHMM-MKL,
PHD-SNP score, and PolyPhen-2, a group of 15 nsSNPs, including P572L, M546V,
721N, F610S, A732T, F51S, A717D, E722K, R57H, R109W, R191H, S532C,
G192S, F529L, and H804Q, was found to be significantly deleterious by all modern
methods. Only LRT did not confirm the effects of the A717D substitution predicted
by other tools. The results obtained using all prediction algorithms were statistically
significant and strongly correlated with each other (the p-value for the Student's t-
test between the tools was 0.001).

The results of our nsSNP analysis of the ELANE gene showed that 21 nsSNPs
were determined to be deleterious using the SIFT algorithm. Of these 21 SIFT-
predicted deleterious nsSNPs, 18 were also predicted to be deleterious by the
PolyPhen-2 and FATHMM-MKL algorithms. However, other algorithms used in
this study did not show 100% agreement (Figure 16).

Among all 21 SIFT-predicted deleterious nsSNPs, the LRT and FATMANH
algorithms predicted the fewest matches. Both algorithms predicted only 10
pathogenic nsSNPs for ELANE, while 11 were classified as tolerant, neutral, or of
unknown significance.

The PolyPhen-2 platform identified 18 pathogenic nsSNPs; VEST, CADD,
and DANN platforms predicted 19; M-Cap and Mutation Taster predicted 20
pathogenic nsSNPs each. Using the SNAP2 approach, 18 damaging mutations were
detected, while three had no association with pathology.

For the PANTHER program, 17 nsSNPs were considered as non-synonymous
mutations, among which 10 nsSNPs were classified as likely pathogenic, 7 as
possibly pathogenic, 2 as likely benign, and 2 as variants of unknown significance.
When analyzed using PROVEAN, 14 out of 21 nsSNPs in the ELANE gene were
predicted to be strongly deleterious, while 7 were considered neutral.

Mutation Assessor considered 20 nsSNPs to be deleterious, including 3 with
high pathogenicity, 6 with medium, and 12 with low, and one with unknown
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significance. P-Mut predicted 10 mutations as pathological, 10 with unknown
significance, and one without a result. PhD-SNP predicted 13 mutations as
pathological, SNP-GO - 10, MetalR - 17, and MTA-SVM - 15.

All modern methods for evaluating the pathogenicity of nsSSNPs used together
revealed 8 overlapping common mutations in the ELANE gene: C71R, P139L,
C151Y, T175M, G203S, G214R, R193W, and F218L (Table 9).

According to the software used, it is known that the allele frequency of C71R
in Latin Americans is 3.655e-05, T175M in Africans is 0.0002, in Latin Americans
- 0.0023, in East Asians - 5.832e-05, in Europeans - 3.632e-05, and in Latin
Americans - 2.979e-05. The results of all prediction algorithms were statistically
significant and closely related to each other. The value of the Student's coefficient

between the tools has a p-value of 0.001.
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Table 8 - Assessment of pathogenicity of identified TCIRGL1 substitutions using various prediction tools

P-MUT [SNAP2

GO

PhD- |PANTHER| SNP-

SNP

MKK

SVM

Accessor

Taster

D

D

LRT | Mutation | Mutation | PROVEAN|FATHMM | VEST3| MTA |[METALR|M-CAP| CADD | DANN | FATHMM-

D
D
D
D
D
D
N
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

3ameHa

P572L

M546V
721N
F610S

AT732T
F51S

AT717D
E722K
R57H

R109W
R191H
S532C

G192S
F529L

H804Q
G405R

S474W
G458S
R444L
R56P

G379S

R757C
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Continue table 8

N730S D |D M D D T D D D D D D D D D |D D
V37sM  |D | D - D D D D D D D D D D D D |D D
T314M D |D - D D D D D D D D D D D D |D D
D517N D |D H D D T D D D D D D D D D |D D
R92W D |D M D D T D D D D D D D D D |D D
T368M D |D - D D D D D D D D D D D D |D D
A4LTT D |D H D D D D D D D D T D D D |D D
R363C D |D - D D D D D D D D D D D D |D D
R56W D |D H D D T D T - D D D D D D |D D
AT78V D |D M D D D D D D D D D D D N | N N
R50C D |D M D D T D D D D D D D D D |D -

V52L D |D M T D T D D - D D D D D D |D D

Note. Substitution refers to an amino acid substitution in the molecule; the following columns represent mutation
pathogenicity prediction programs. D - damaging substitution, T - tolerated, N - neutral, M - medium probability, L - low, H - high,

P - pathogenic, - no data.
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Table 9 - Assessment of pathogenicity of identified ELANE substitutions using various prediction tools

3ameHa LRT |Mutatio| Mutation | PROVEAN|FATHMM | VEST3| MTA |METALR/M-CAP|CADD | DANN | FATHMM- | PhD- |[PANTHER|SNP-| P-MUT [SNAP2

n Taster| Accessor SVM MKK SNP GO
C71Yy 0.001 1 421 -11.22 -4.7 094 | 1.09 | 0968 | 0.97 | 23.9 | 0.987 0.817 0.93 0.907 0.9 0.71 77
- D H D D 4 7 D 3 D D D 3 D 82 D D

D D D D D
P139L 0.002 | 1.00 2.72 -8.79 -3.56 091 | 095 | 0.886 | 0.94 | 26.6 | 0.999 0.747 0.73 0.888 0.8 0.85 59
- D M D D 2 6 D 2 D D D 3 D 55 D D

D D D D D
C151yY 0.001 | 1.00 | 2.745 -10.41 -3.34 0.92 | 1.00 | 0.900 | 0.92 | 25.2 0.916 0.93 0.988 0.9 0.9 82
- D M D D 5 5 D 3 D 0.996 D 9 D 39 D D

D D D D D D
T175M 0.002 | 0.94 1.98 -4.76 -2.48 0.77 | 0.79 | 0.812 | 0.89 33 0.685 0.24 0.833 0.7 0.7 20
- 0 M D D 4 8 D 1 D 0.999 D 2 D 19 D D

D D D D D N D
G203S 0.001 | 0.99 | 3.865 5.4 -7.34 0.73 | 0.91 | 0.966 | 0.96 27 0.998 0.826 0.89 0.909 0.9 0.89 77
- 7 H D D 7 5 D 6 D D D 8 D 09 D D

D D D D D D
G214R 0.001 | 1.00 4.2 -6.2 -6.13 096 | 0.99 | 0989 | 0.94 | 26.7 | 0.999 0.934 0.92 0.98 0.9 0.9 94
- D H D D 5 7 D 9 D D D 4 D 04 D D

D D D D D
R193W 0.071 | 1.00 | 1.755 -5.69 -2.45 0.80 | 0.06 | 0.733 | 0.80 27 0.998 0.240 0.56 0.909 0.8 0.63 55
- D M D D 5 8 D 6 D D D 6 D 34 D D

D D D D D
F218L 0.001 | 0.99 | 2.915 -4.82 -3.25 0.76 | 0.89 | 0.861 | 0.80 | 24.7 | 0.998 0.904 0.76 0.531 0.8 0.84 76
D 0 M D D 6 8 D 7 D D D 9 D 99 D D

D D D D D D

Note. Substitution refers to an amino acid substitution in the molecule; the following columns represent mutation
pathogenicity prediction programs. D - damaging substitution, T - tolerated, N - neutral, M - medium probability, L - low, H - high,
P - pathogenic, - no data.
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Figure 15 - Results of predicting the impact of 64 nsSNPs in the TCIRG1 gene
analyzed by eighteen computational tools
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Figure 16 - Results of predicting the impact of 21 nsSNPs in the ELANE gene,
analyzed by eighteen computational tools

Thus, following this stage of research, 15 of the most harmful non-

synonymous single nucleotide substitutions (and corresponding amino acid
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substitutions) were selected, which according to the predictions of the algorithms
used, will have the greatest impact on the structure and function of the TCIRG1
protein: rs199902030, rs200149541, rs372499913, rs267605221, rs374941368,
rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251,
rs121908251, rs149792489, rs116675104, rs118141250. One of these substitutions
(rs118141250, Val52Leu) was previously identified in a patient from the Sverdlovsk
region through whole-genome sequencing.

For the ELANE gene, a total of 8 nsSNPs - rs28931611, rs57246956,
rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and
rs20038429 - were selected. These nsSNPs (and corresponding amino acid
substitutions) were subsequently analyzed by other methods in order to determine

their impact on the 3D structure and function of the proteins.

4.2 - Prediction of nsSNP impact on protein stability using computational

tools I-Mutant and MU-pro

The impact of nsSNPs with high pathogenic risk on the stability and function
of the TCIRG1 protein was evaluated using the I-Mutant 3.0 web service. The results
showed that the amino acid substitutions G405R, S474W, and A778V increase the
stability of the protein, while P572L, M546V, 1730N, F610S, A732T, F51S, A717D,
E722K, R57H, R109W, R191W, S532C, G192S, F529L, H804Q, G458S, R444L,
R56P, G379S, R757C, N730S, V375M, T314M, D517N, R92W, T368M, A417T,
R363C, R56W, and R50C decrease its calculated stability (Table 10).

The results of the impact of nsSNPs with high pathogenic risk on the stability
and function of the ELANE protein showed that the amino acid substitutions V101L
and A166V increase the protein stability, while R34W, C71R, V101M, P139L,
R143C, C151Y, A166T, T175M, R182H, V190M, R193W, G203S, L206F, N209K,
G210R, G214R, F218L, P262S, and P262L R50C decrease its predicted stability. At
the same time, the Mu-pro algorithm showed that all the nsSNPs with a high
pathogenicity score identified in the previous tests reduce protein stability
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Table 10 - Results of analysis of highly deleterious nsSNPs in the TCIRG1

gene using the I-Mutant 3.0 program

AAC "Confidence score Impact on protein stablity
P572L -0.35 Decrease
M546V -0.56 Decrease
730N -1.74 Decrease
F610S -1.43 Decrease
A732T -0.69 Decrease
F51S -1.78 Decrease
A717D -0.51 Decrease
E722K -0.44 Decrease
R57H -1.47 Decrease
R109W -0.06 Decrease
R191W -0.37 Decrease
S532C -0.58 Decrease
G192S -1.00 Decrease
F529L -0.95 Decrease
HB804Q -0.10 Decrease
G405R -0.28 Increase
S474W -0.10 Increase
G458S -1.26 Decrease
R444L -0.23 Decrease
R56P -0.85 Decrease
G379S -1.41 Decrease
R757C -1.00 Decrease
N730S -0.34 Decrease
V375M -1.06 Decrease
T314M 0.02 Decrease
D517N -0.98 Decrease
R92W -0.24 Decrease
T368M -0.37 Decrease
A417T -0.78 Decrease
R363C -1.00 Decrease
R56W -0.49 Decrease
AT78V -0.15 Increase
R50C -1.20 Decrease
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4.3 - Analysis of the impact of nsSNPs in the TCIRG1 and ELANE genes

on protein conserved regions

According to the results of the ConSurf analysis, 22 pathogenic nsSNPs were
found in highly conserved regions (7-9 conservation score) of the TCIRGL1 protein.
Additionally, 16 substitutions - S7K, V52L, G379S, M403l, G405R, G458S,
D517N, F529L, S532C, M546V, A640S, D683H, 1732N, N730S, A732T, H804Q -
were predicted as substitutions in functional and exposed amino acid residues of the
protein. Ten substitutions such as A20V, R56P, R57H, R191H, G192C, E321K,
R366H, T368M, R444L, and E722K were predicted in the region of functional and
exposed residues, while the remaining 16 - S7K, V52L, G379S, M403I, G405R,
G458S, D517N, F529L, S532C, M546V, A640S, D683H, 1732N, N730S, A732T,
and H804Q - were predicted as buried and structural residues. The following 18
substitutions - S3F, R28W, S45A, R50C, R92W, R109W, R166T, T314M, D328M,
S340L, R363C, R382H, R467H, S474W, P572L, Y626S, R628W, and R757C -
were predicted as substitutions in exposed regions, while the remaining 9 - F51S,
V348M, V375M, A417T, T570M, F610S, A717D, A778V, and M783Il - were
predicted as substitutions in buried amino acids. The results are presented in Figure
17.

According to the ConSurf analysis results for the ELANE protein, 22
dangerous nsSNPs were identified in highly conservative regions of the protein (7-
9 on the conservation scale). Among these 22 missense variants, 8 were located in
highly conservative positions, 2 - P139L and C71R - were predicted to be functional
and exposed residues, and the remaining 3 - G214R, C151Y, and C71Y - were
predicted to be buried and structural residues. The following 12 substitutions -
R34W, R143C, A166T, Al66V, T175M, R182H, V190M, R193W, N209K, G210R,
P262S, and P262L - were predicted to be amino acid substitutions in exposed regions
of the protein, and F218L, V101L, and V101M - as substitutions in buried residues.
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ConSurf Results
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Figure 17 - Location of amino acid substitutions in the TCIRGL1 protein
considering evolutionary conservation and the location of different regions of the
protein according to the ConSurf analysis
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Continue figure 17.
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Figure 17 - Location of amino acid substitutions in the TCIRG1 protein
considering evolutionary conservation and the location of different regions of the
protein according to the ConSurf analysis

Note: Value 1 indicates high variability of the region, while 9 indicates the
most conservative region in terms of evolution.

4.4- 3D modeling of protein structures of TCIRG1, ELANE with the

identified potentially harmful amino acid substitutions taken into account

The prediction of protein structures, taking into account the selected amino
acid substitutions identified in previous stages of the study, was performed using
Phyre2, I-Tasser, HHpred, and AlphaFold2. For the protein TCIRG1, there were 15
amino acid substitutions, including the one identified in a patient from the
Sverdlovsk region. All of these mutations were included in a single 3D structure of

the TCIRG1 protein, as they were located in different regions. Thus, when
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overlaying and comparing the models, differences in the 3D structure for each of the
regions where a substitution could occur were observed.

The template for predicting the impact of substitutions on TCIRG1 in Phyre2
was the model template C6VVQ7A (the template with the highest similarity according
to the Phyre2 server data). Phyre2 was used to create 3D structures of the TCIRG1
protein considering its 56 mutations. nsSNP substitutions in the TCIRG1 protein
sequence were modeled separately and then passed to Phyre2, which predicted 3D
structures of the mutant proteins. However, our comparative studies showed that
AlphaFold2 provided much higher quality results for analyzing TCIRG1 than
Phyre2. Therefore, further MDS investigations of the TCIRG1 protein were
conducted without using Phyre2.

An example of the 3D structure of the TCIRGL1 protein in AlphaFold2 with
the selected amino acid substitutions included in the study is presented in Figure 18.
The wild-type structure was previously predicted by AlphaFold2 and is available for
download from UniProt (identifier Q13488).

When comparing the 3D models of wild-type and mutant protein types,
metrics for comparing models (TM-score) and root mean square deviation (RMSD)
of distances between natural and mutant model carbon atoms (during molecular
dynamics simulations for 50 and 100 ns) were determined. Low TM-score and high
RMSD values indicated that the mutant structure differed from the wild-type
structure. The corresponding analysis of 34 nsSNPs identified as harmful to the
TCIRG1 protein during joint analysis using SIFT and PolyPhen2 is presented in
Table 11.

The mutant R92W (rs371907380) has the highest RMSD value of 0.89B,
followed by R444L (rs137853151), N730S (rs200209146), and S532C
(rs371214361) with 0.84B, 0.84B, and 0.81B, respectively. F610S, M546V, and
P572L have RMSD values of 0.81B, 0.78B, and 0.78B, respectively, indicating no
significant structural differences from the wild type.
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Figure 18 - 3D structure of wild-type and mutant-type TCIRG1 protein predicted
by AlphaFold2, and superimposition of the three-dimensional structures (at the
bottom)

Other nsSNPs showed minor differences, including 1721N (0.53B RMSD),
A732T (0.78B RMSD), R51C (0.78B RMSD), A717D (0.73B RMSD), E722K
(0.46B RMSD), R57H (0.48B RMSD), R109W (0.78B RMSD), R191H (0.49B
RMSD), G192C (0.78B RMSD), F529L (0.58B RMSD), H804Q (0.48B RMSD),
G405R (0.48B RMSD), S474W (0.53B RMSD), G458S (0.48B RMSD), R56P
(0.48B RMSD), R56W (0.78B RMSD), G379C (0.58B RMSD), R757C (0.48B
RMSD), V375M (0.54B RMSD), T314M (0.78B RMSD), D517N (0.49B RMSD),
T368M (0.78B RMSD), A417T (0.40B RMSD), R363C (0.78B RMSD), A778V
(0.76B RMSD), and R50C (0.78B RMSD).

Four nsSNPs with the highest RMSD values (R92W, R444L, N730S, and
S532C) were selected and submitted to I-Tasser for modeling. However, a
comparative analysis of the results showed that higher-quality protein modeling
results were obtained using HHPred and AlphaFold2. Therefore, below is a
comparison of the 3D models of the wild-type and mutant TCIRG1 variants in
AlphaFold2 - before starting the molecular dynamics simulation (Figure 19), at 50



nanoseconds of simulation (Figure 20), and at 100 nanoseconds of molecular

dynamics simulation (Figure 21).

Table 11 - TMscore and RMSD values for 34 deleterious nsSNPs in TCIRG1

107

NSSNP A.AVariants TM-Score RMSD
rs371907380 R92W - 0,89
rs199902030 P572L 0.99626 0.78
rs200149541 M546V 0.99626 0.78
rs372499913 721N 0.99760 0.53
rs267605221 F610S 0.99312 0.81
rs374941368 A732T 0.99621 0.78
rs375717418 F51S 0.99626 0.78
rs80008675 A717D 0.99661 0.73
rs149792489 E722K 0.99830 0.46
rs116675104 R57H 0.99790 0.48
rs121908250 R109W 0.99626 0.78
rs121908251 R191H 0.99785 0.49
rs121908251 S532C 0.99092 0.81
rs149792489 G192C 0.99626 0.78
rs116675104 F529L 0.99435 0.58
rs121908251 G405R 0.99674 0.62
rs116675104 G458S 0.99674 0.48
rs121908251 R56P 0.99657 0.48
rs121908252 R56W 0.99621 0.78
rs121908254 G379C 0.99435 0.58
rs147974432 R757C 0.99790 0.48
rs192224843 N730S 0.99275 0.84
rs115982879 V375M 0.99743 0.54
rs139059968 T314M 0.99626 0.78
rs141125426 D517N 0.99785 0.49
rs147208835 R92W 0.96213 0.89
rs147681552 T368M 0.99626 0.78
rs148498685 A417TT 0.99790 0.48
rs149531418 R363C 0.99626 0.78
rs149531418 AT78V 0.99661 0.76
rs147208835 R50C 0.99621 0.78
rs121908250 H8040Q 0.99790 0.48
rs149792489 S474W 0.99760 0.53
rs121908250 R444L 0.99270 0.84
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Figure 19 - Overlay of the 3D structures of wild-type (yellow) and mutant type
(blue) TCIRG1 protein prior to the start of molecular dynamics simulation
Note: The most deleterious substitutions incorporated into the model are
highlighted in orange, and the corresponding regions on the wild-type model are
highlighted in green.

Figure 20 - Overlay of 3D structures of wild-type (yellow) and mutant-type (blue)
TCIRGL protein after 50 nanoseconds of molecular dynamics simulation
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Figure 21 - 3D structures of wild-type (yellow) and mutant (blue) TCIRGL1 protein
during a 100-nanosecond molecular dynamics simulation

Subsequently, these selected mutant types of TCIRG1 were evaluated using
Schrodinger packages in molecular dynamics simulations. Phyre2 was used to model
the 3D structures of both the wild-type and mutant types of the ELANE protein. The
c601gA model was chosen as the template for predicting the 3D model of ELANE
in Phyre2 (Figure 22). The predicted 3D structures of the mutant proteins are shown
in Figure 23

Figure 22 - Wild-type ELANE protein model generated by Phyre2
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The I-Tasser program was used for three-dimensional modeling of the
ELANE protein. The resulting 3D models from I-Tasser were then uploaded to the
Zhanggroup online service, which provided metrics for comparing the models,
including the TM-score and root-mean-square deviation (RMSD).

The mutant model C71Y (based on nsSNP rs28931611) had the highest
deviation from the wild-type ELANE template, with an RMSD value of 2.05A. This
was followed by R34W (rs201163886), F218L (rs200384291), and G214R
(rs137854451), with RMSD values of 1.98A, 1.96A, and 1.12A, respectively.
P139L, G203S, and R193W had RMSD values of 0.04A, 0.49A, and 0.96A,
respectively, indicating no significant structural differences from the wild-type.
Table 12 shows the TM-scores and RMSD values for the ELANE mutant types.

Wild ELANE
Mutant ELANE

2 % :/‘—*\
— *pL‘: ' \/ I ] &,
R34W

Figure 23 - Overlay of wild-type (blue) and mutant (yellow) ELANE proteins
including 4 most significant amino acid substitutions: C71R, F218L, R34W, and
G214R
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The four nsSNPs with the highest RMSD values (C191Y, G214R, R34W, and
F218L) were selected and passed into I-Tasser for remodelling and comparison with
the wild-type structure (Figure 23). The verification results for the wild-type and
mutant 3D models were satisfactory. These selected ELANE mutant types were

subsequently used in an in silico experiment for molecular docking screening.

Table 12 - TM-score and RMSD values for 7 selected nsSNPs in ELANE

NSSNP AAS TM-Score RMSD
rs28931611 C71Y 0.85993 2.05
rs201163886 R34W 0.86482 1.98
rs200384291 F218L 0.87828 1.96
rs137854451 G214R 0.96114 1.12
rs201723157 R193W 0.95176 0.96
rs201139487 G203S 0.99524 0.49
rs137854448 P139L 0.99994 0.04

Note: A.A.S - Amino acid substitutions

4.5 - Evaluation of the interaction of mutated ELANE types by docking

Docking was visually evaluated using Discovery Studio and PyMol, and
docking interactions were calculated to identify binding strengths, which were
decisive in stabilizing the formation of receptor-ligand complexes. The ANH ligand
was docked into the active site of the wild-type protein as well as four mutant
proteins. The docking score for the wild-type was -8.4 kJ/mol, and 2D interaction
showed that the wild-type had two hydrogen bonds with SER202, as well as seven
van der Waals and seven hydrophobic contacts (Figure 25). The docking score for
the G214R, R34W, C71Y, and F218L mutations was -9.2, -7.5, -7.1, and -6.8
kJ/mol, respectively. The 2D interaction for G214R showed two hydrogen bonds
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with SER202, seven van der Waals, and five hydrophobic interactions. The R34W
substitution showed two hydrogen bonds with SER202 and VALZ219, six van der
Waals interactions, and eight hydrophobic interactions. One hydrogen bond was
present in the C71Y mutation with ARG81, four van der Waals, and eight
hydrophobic interactions. Figure 26 shows the interactions for ELANE with the
C71Y substitution. Similarly, F218L showed one hydrogen bond with ASN74, six
van der Waals, and four hydrophobic interactions (Figure 27). Two mutations,
G214R and R34W, have interactions quite similar to the wild-type. All of them are
involved in a hydrogen bond with SER202. The other two substitutions, C71Y and
F218L, have fewer hydrogen bonds, indicating that these two mutations may affect
the stability and energy of the protein (Figures 24-26).
3D wild ELANE docking 2D wild ELANE docking
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Figure 24 - 2D and 3D surface plots of wild-type ELANE with a ligand inside the
active pocket
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3D ELANE (C71Y) docking 2D ELANE (C71Y) docking
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Figure 25 - 2D and 3D surface graphs of ELANE with C71Y substitution and
ligand inside the active pocket
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Figure 26 - 2D and 3D surface graphs of ELANE with F218L substitution and
ligand inside the active pocket

4.6 - Molecular dynamic simulation of wild-type and mutant TCIRG1

During the molecular dynamics simulations in the HHPred program (Figure
27) and AlfaFold2 (Figure 28), the evolution of the root mean square deviation

(RMSD) of the alpha-carbon atoms (Ca) in the protein molecule over time was
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generated. The graph in Figure 28, obtained from HHPred, showed that the protein
reached stability at 20,000 ps. Subsequently, throughout the simulation time, the
fluctuation of the RMSD values for the wild type remained within 2.0 angstroms,
which is acceptable [78]. The RMSD values for the mutant protein fluctuated within
3.5 angstroms after they had been equilibrated. These results indicate that the mutant
protein has a higher RMSD throughout the simulation period. On the RMSF plot,

peaks represent protein parts that oscillate the most during the simulation (Figure
29).

Y

== Wild TCIRG1
== Mutant TCIRG1
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Time (ps)

Figure 27 - Root-mean-square deviation (RMSD) of wild type and mutant Ca
atoms over time (100 ns) based on HHpred data

Note: The x-axis represents time in picoseconds (ps), and the y-axis represents
RMSD in angstroms (A).
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Figure 28 - Root mean square deviation (RMSD) of wild-type and mutant
TCIRG1's Ca atoms over time (100 ns) according to AlfaFold2 data

Note: The x-axis represents time in picoseconds (ps), and the y-axis represents
RMSD in angstroms (A).
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Figure 30 shows the total energy of the mutant and wild-type TCIRG1 protein,
and Figure 31 shows the Van der Waals energy of the wild-type and mutant
TCIRGL. Protein tails (both N- and C-terminal) usually undergo more significant
changes than any other part of the protein. Alpha helices and beta sheets, for
example, are usually more rigid than the unstructured part of the protein and oscillate
less than loop parts. According to the calculated MD trajectories, residues with large
peaks belong to loop regions or N- and C-terminal zones. Alpha helices and beta
sheets are tracked as secondary structure elements (SSE) during modeling. Figure
32 shows the distribution of secondary structures by residue index for all protein
structures, and Figure 33 shows the distribution of secondary structure elements over
the simulated time of 100 ns. All of these results indicate that the stability of the

mutant TCIRG1 molecule is reduced relative to the wild-type protein.
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Figure 29 - Root Mean Square Fluctuation (RMSF) of wild-type TCIRGL1 protein
(left) and mutant TCIRG1 protein (right)
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Figure 30 - Total energy of wild-type and mutant TCIRGL1 protein
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Figure 31 - Van der Waals energy of wild-type and mutant TCIRG1 protein
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Figure 32 - Percentage of secondary structure elements in wild-type and mutant
TCIRGL1 protein
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Figure 33 - Distribution of secondary structure elements during the simulated time
of 100 ns
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The majority of significant intramolecular interactions detected using
molecular dynamics simulations are hydrogen bonds (Figure 34). The time scale
shows the interactions and contacts. The distribution of atoms in a protein around its
axis is known as the radius of gyration (Rg). The folding speed of a protein is directly
related to its compactness, which can be tracked using an advanced computational

approach to determine the radius of gyration (Figure 35).
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Figure 34 - Temporal representation of hydrogen bond interactions and contacts in
wild-type (A) and mutant (B) TCIRG1 protein

A B

Figure 35 - Radius of gyration of wild-type (A) and mutant (B) TCIRG1 protein
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We did not perform molecular dynamics simulation and corresponding amino
acid substitution analysis for the ELANE protein. Only docking was conducted for
ELANE. This is because the relevance of studying TCIRG1 was justified by having
the patient's whole-genome data with phenotypic manifestations of congenital
neutropenia, but with clinical features that raised doubts about the accuracy of the
diagnosis. After whole-genome sequencing was performed in a commercial
laboratory, the diagnosis was not confirmed. Therefore, the decision was made to
apply new methods to identify mutant genes related to the patient's phenotype and
confirm the diagnosis.

Analysis of the whole-genome sequencing data revealed several potentially
significant mutations, but only one was related to neutropenia. Specifically, a non-
synonymous single nucleotide substitution g. 68041789G >C was identified in the
TCIRG1 gene (amino acid substitution VV52L). This substitution was included in the
list of substitutions analyzed above, allowing for a more justifiable assumption that
the variant gene found in the patient may have clinical significance.

Thus, non-synonymous single nucleotide substitutions in the TCIRG1
(rs199902030, rs200149541, rs372499913, rs267605221, rs374941368,
rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251,
rs121908251, rs149792489, and rs116675104) and ELANE (rs200384291,
rs201163886, rs193141883, rs201139487, and rs201723157) genes destabilize the
protein structure and function.

4.7 - Investigation of candidate genes in congenital neutropenia

The first step in searching for or predicting new candidate genes for a
congenital disease is a review analysis of published information, analysis of
information in genome and inherited disease databases, as well as a review of genetic

studies related to the specific disease.

Simple information search in genetic databases such as OMIM (Online
Mendelian Inheritance in Man) and HGMD (Human Gene Mutation Database)
helped identify previously registered mutations leading to diseases, and analysis of

publications in PubMed suggested the direction of further research.
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Analysis of protein-protein interactions (PPI) of known genes in congenital
neutropenia in the human genome was the key to understanding the multigenic

nature of congenital neutropenia and further identification of candidate genes.

Using the STRING database, information on protein-protein interactions
(PP1) was extracted for all known genes in primary immunodeficiencies (PID). Its
visual representation using Cytoscape software is shown in Figure 36, where genes
in congenital neutropenia are shifted to the center of the network of interactions.
This suggested that genes in congenital neutropenia interact more often than random
PID genes, which is logical, since despite the different genetic cause of congenital
neutropenias, the phenotypes of different disease variants are similar, and common
signaling pathways are involved in providing a similar pathogenesis. In congenital
neutropenia, mechanisms related to regulating the number and functions of

neutrophils are primarily disrupted.



120

SEMA3E
Z 4
T TRNT1

CDCA7
CCBE1

POLRFGINSL INO80

TCN2
Hyou1 ALPI

DNAJC21 & FAT4

EFTUD1 mmT%zMSA Mysm
R ADA@R
‘ APf2 ALB2
. shixio- -/ 1SS AP : ‘ ERCC6L2
. ? PC1B ‘ |

PLEKHM1 SRP72
POLR3F

EPG5

SLC46A1
SLC29A3

VPS13B

IRF2BP2

NLRP1
\

SLC3RcsTn
IL36RN
PSENEN
ZNF341 RFX5 REXAP
CoPA
REXANK
AP3D1 N o S
NBAS \i N -~ —ieae
«C7 &5 W :
B csB
DNASE2
SLCTA7
DNASE1L3

Figure 36 - Protein-protein interaction network of PID genes (Cytoscape was used
to visualize the data extracted from the STRING database)
Note: The known genes of congenital neutropenia are represented by purple
nodes, while the PID genes are represented by green nodes in the network.

The figure 37 shows a plot of the functional relationships between known

genes associated with congenital neutropenia.
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Figure 37 - A visualized network of protein-protein interactions between known
genes of congenital neutropenia, extracted from the STRING database (result of
analysis in Cytoscape)

To further investigate the complex gene interactions in congenital
neutropenia, the network density of a group of 31 congenital neutropenia genes was
evaluated and compared with ten random PID groups, each consisting of 41 genes.
The connectivity and network density of PPl networks in each group were then
measured and compared using the network density estimation method (network D),
and our results showed a higher network density in the congenital neutropenia group
compared to the 10 random groups. These results indicated a strong interaction
between congenital neutropenia genes (Figure 38).

We also analyzed the distribution of biological distance between the group of
known genes associated with congenital neutropenia and two random groups, taking
into account that a smaller biological distance indicates a stronger association

between the genes in the group (Figure 39).
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Figure 38 - Comparison of network density between a group of known congenital
neutropenia genes and ten random PID gene groups
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Figure 39 - Comparison of biological distance in the group of known genes for
congenital neutropenia and 2 random PID groups

The results showed that the median density of the distribution of the group of
known genes associated with congenital neutropenia is 1.067, whereas the median
density of the distribution of random groups 1 and 2 is around 2.6, indicating a
stronger functional relationship between the known genes associated with congenital

neutropenia (Figure 39).
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We also studied the distribution of biological distance between the group of
known genes associated with congenital neutropenia and two random groups (a
smaller biological distance indicates a stronger association between genes in the
group). The results showed that the median density of the distribution of the group
of known genes associated with congenital neutropenia was 1.067, while the median
density of the distribution of random group 1 and random group 2 was about 2.6,
indicating a closer functional relationship between the known genes associated with
congenital neutropenia (Figure 39).

Based on Pearson correlation analysis (PCC) and protein-protein interactions
provided by Cheng F., et al. (2018) [203], we obtained 4,613 specific gene
interactions functionally related to congenital neutropenia and 177 candidate genes.
Using KEGG data, we conducted functional enrichment analysis of known
congenital neutropenia genes by linking the genes in the list to their biological
functions. Our KEGG pathway analysis revealed five statistically significant
signaling pathways (p<0.05), such as cytokine-cytokine receptor interaction,
chemokine signaling pathways, and others (Figure 40).

We searched for specific candidate genes that are functionally similar to
known congenital neutropenia genes and enriched in at least one of the
aforementioned five KEGG pathways. Thus, we identified 15 new candidate genes
for congenital neutropenia: STATL1, STAT2, STAT3, STAT5B, LYN, FGR, SRC,
PIK3CG, ITK, VAV1, CDC42, PTK2, CRKL, PLCG1, and ARRB2.

Figure 41 shows the PPI network of known congenital neutropenia genes and
candidate genes. Functional enrichment analysis of congenital neutropenia genes,
including the 15 candidate genes, showed a total of 15 statistically significant
signaling pathways described in the KEGG database (e.g., Epstein-Barr virus
infection, cytokine-cytokine receptor interaction, and B-cell receptor signaling

pathway).
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Figure 40 - Analysis of functional enrichment of candidate genes for congenital
neutropenia based on the KEGG database
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Figure 41 - Protein-protein interaction network of known and candidate genes
associated with congenital neutropenia (Cytoscape)
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Biological distances between the 15 candidate genes involved in congenital
neutropenia were assessed and compared to the biological distances of 31 known
genes involved in congenital neutropenia. As a result, the mean biological distance
of the candidate genes was 6.08, which was lower (or equivalent) than that of the
known genes involved in congenital neutropenia. This indicates that the candidate
genes for congenital neutropenia have comparable strong biological connections
(Figure 42).

[T} || Known CN
CN Candidates

Bivlogical Distance

Figure 42 - Density plot of biological distances between known genes involved in
congenital neutropenia and predicted candidate genes

Then the candidate gene for congenital neutropenia was mixed with known
congenital neutropenia genes, and the biological distance of the mixed gene was
determined again. Then the mixed genes were subjected to phylogenetic analysis
FGA to determine the biological relatedness between the congenital neutropenia
genome and the candidate congenital neutropenia genome. The results showed that
the candidate genes for congenital neutropenia were evenly distributed across the
range of known congenital neutropenia genes, implying their close association with

known congenital neutropenia genes (Figure 43).
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Figure 43 - Phylogenetic tree of biological distances generated by FGA showing
hierarchical clustering of all known congenital neutropenia genes (blue) and
predicted congenital neutropenia genes (red)

Note: the length of the branch indicates the strength of the separation between
subjects

In addition, a diagram of the interrelationships between the candidate genes
for congenital neutropenia and their associated signaling pathways was formed using
KEGG through functional enrichment analysis (Figure 44).
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Figure 44 - Chord diagram of candidate genes for congenital neutropenia and their

associated signaling pathways (based on KEGG data)

Assessment of gene expression differences in peripheral blood neutrophils of
patients allowed for a search for new candidate genes from a different perspective,
confirming our preliminary findings.

In the GSE142347 dataset, the expression of 1327 genes was significantly
different in peripheral blood neutrophils of patients with congenital neutropenia
compared to healthy controls, with 739 genes upregulated and 558 genes
downregulated in expression. In the GSE6233 dataset, 573 genes were found to have
significant differential expression in B-cells of patients with congenital neutropenia

compared to control samples, with 274 genes upregulated and 299 genes
downregulated in expression (Figure 45).
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Figure 45 - Volcano plot of differentially expressed genes in samples from the
GSE6322 (left) and GSE142347 (right) datasets
Note: light red dots are presenting upregulated light blue are downregulated while
light darkish dots are showing not significant difference

In addition, comparison of genes with increased expression in neutrophils
from peripheral blood and B cells from patients with congenital neutropenia
identified 1 common gene, while comparison of genes with decreased expression in
neutrophils from peripheral blood and B cells from patients with congenital
neutropenia identified 7 common genes with reduced expression relative to control
samples (Figure 46). This effectively indicated the identification of common
transcriptomic features of neutrophils and B cells in patients with congenital
neutropenia.

Some of the known PID genes also showed significant differences in
expression. In the GSE6233 dataset, 10 genes had increased expression and 7 had
decreased expression. In the GSE142347 dataset, 3 genes were increased and 18
were decreased in expression. The genes with increased expression in GSE6233
were LAMTORZ2, SmarCD2, CD81, ZBTB24, ACTB, CASP10, APOL1, PARN,
ITGB2, and IRF3. The genes with increased expression in the GSE142347 dataset
were SEC61A1, MASP2, and RAD51. Among the genes with decreased expression
in the GSE6233 dataset were SEC61A1, MTHFD1, STIM1, EXTL3, TGFBR1,
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CEBPE, and HAX1. The genes with decreased expression in the GSE142347 dataset
were PTPRC, RAC2, BRCAL, PRF1, FCGR3A, ACTB, COPA, IL2RG, MSN,
IKZF1, KDM6A, CD55, AP1S3, NFKB1, WDR1, JAK1, IFIH1, and RAD51C. All
known and candidate genes for congenital neutropenia, except CXCR4, LAMTOR?2,
STATL, and STAT?2, were almost more highly expressed in patients with congenital

neutropenia than in control samples (Figure 47).
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1 7
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Figure 46. Venn diagrams of overlapping highly and lowly expressed genes in

congenital neutropenia in different cell types

We conducted a quality control study by examining some studies after
identifying new candidate genes. In particular, ten candidate genes for congenital
neutropenia (STAT1, STAT2, STAT3, STATS5B, LYN, FGR, SRC, PIK3CG, ITK,
VAV1, CDCA42) that were not included in our initial list of congenital neutropenia
genes obtained from ESID, but predicted by us, were found in clinical cases of
congenital neutropenia. This demonstrates the significance of the identified

candidate genes for congenital neutropenia (Table 13).
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Figure 47 - Heatmap of differentially expressed known and candidate genes in
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Table 13 - Candidate genes for congenital neutropenia with recently reported

associations with congenital neutropenia

Gene Description Common pathways and | Main effect on | Ref.
Symbol main role neutrophils due the
CDC42 | Cell Division Cycle 42 protein, | ATP-binding component | Actin polimerisation | PMID: 19082760
responsible for cell morphology, | of the Arp2/3 complex | and phagocytosis PMID: 21178275
cell cycle, and in particularly actin | through the WASP - 10360578
polymerization in N-WASP gﬁig 34425130
CRKL Crk Like Proto-Oncogene, | ATP-binding component | Actin polimerisation | PMID: 11313252
Adaptor Protein. CrkL binds to | of the Arp2/3 complex and phagocytosis PMID: 22837718
WASP protein through the WAVE PMID: 12504004
PMID: 23934128
FGR Src family of protein tyrosine | Tyrosine Kinases [/ | G-CSF PMID: 1895577
kinase Adaptors and Regulatio | Neutrophil regulation PMID: 8634424
n of actin dynamics for
phagocytic cup
formation.
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Continue table 13

SRC proto-oncogene tyrosine-protein | Cytokine Signaling in | G-CSF PMID: 16772601
kinase Src Immune
system and PEDF
Induced Signaling.
LYN Src  Family Tyrosine Kinase | Antigen sygnaling | Initiation of the B-cell | PMID: 10643150
involved in the regulation of cell | transduction response, B-cell PMID: 23001182
activation differentiation PMID: 19201855
PLCG1 | phospholipase C gamma 1, plays | NGF PMID: 29543328
an important role in the | Pathway and CCR5 )
intracellular  transduction  of | Pathway in )
receptor-mediated tyrosine kinase | Macrophages.
activators, has role in neutrophil
extracellular trap formation
ARRB2 | Arrestin beta 2 Cytokine Signaling in | IL8-mediated granule | PMID: 24657625
Immune release in neutrophils
system and Tyrosine
Kinases / Adaptors.
PIK3CG | Phosphatidylinositol-4,5- NF-kappaB Pathway, Together with | PMID: 29233821
Bisphosphate 3-Kinase Catalytic ImmL:ne response CEII?3 PIK3CD participates PMID: 29191916
Subunit Gamma signaling in eosinophils. | in neutrophil .
respiratory burst. PMID: 31964785
Together with
PIK3CD is involved in
neutrophil chemotaxis
and extravasation
PTK2 Protein Tyrosine Kinase 2 NF-kappaB - A question about
Pathway and
Cytokine Signaling in g!ycogen storage
Immune system disease 1b
STAT1 Signal transducer and activator of | Peginterferon alpha- | Role in  immune | PMID: 27879260
transcription 1 2a/Peginterferon alpha- | responses PMID: 29202461
2b Pathway )
(Hepatocyte), PMID: 33344614
Pharmacodynamics PMID: 27222657
Cytokine Signaling in
Immune system
STAT2 Signal transducer and activator of | Peginterferon alpha- | Act as transcription | PMID: 27881648
transcription 2 2a/Peginterferon alpha- | activators PMID: 27713294
2b Pathway
(Hepatocyte),
Pharmacodynamics
Immune response IFN
gamma signaling
pathway
STAT3 Signal transducer and activator of | Cytokine Signaling in | G-CSF, PMID: 29330115
transcription 3 (acute-phase | Immune system Maturation of immune PMID: 28253502
response factor) IL-4 Signaling | system cells, -
Pathways. especially T cells and
B cells
STAT5B | Signal Transducer And Activator | Cytokine Signaling in | Granulocyties PMID: 29160632
Of Transcription 5b ImmuneI SySteT] and IL- | differentiation PMID: 33255665
4 Signaling Pathways.
PMID: 24512550
PMID: 31585621
VAV Vav Guanine Nucleotide | Cytokine Signaling in | Cell differentiation T- | PMID: 12874226
Exchange Factor 1 Immune cell and B-cell PMID: 31456807
system and Developme | development and .
nt Dopamine D2 | activation PMID: 10879282
receptor transactivation
of EGFR
ITK IL2 Inducible T Cell Kinase Tyrosine  Kinases /| Regulates the | PMID: 32306816
Adaptors and T-Cell development, function PMID: 34365077
Receptor and  Co- | and differentiation of .
stimulatory Signaling. conventional —T-cells PMID: 34368657
and nonconventional | PMID: 33007409
NKT-cells PMID: 32049330
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In conclusion, of this cheapter, 15 candidate genes for congenital neutropenia have
been identified that may influence neutrophil functions: STAT1, STAT2, STATS,
STATSB, LYN, FGR, SRC, PIK3CG, ITK, VAV, CDC42, PTK2, CRKL, PLCG1,
ARRB2. The identified missense variants for TCIRG1 and Elane gene contain

scientific and clinincal importans.
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CHAPTER S5 - IDENTIFICATION OF NEW MISSENSE MUTATIONS IN
THE CCBE1, FAT4, AND ADAMTS3 GENES LEADING TO HENNEKAM
SYNDROME

The aim of the study was to investigate the potential pathogenicity of novel
missense substitutions in the CCBEL, FAT4, and ADAMTS3 genes identified in the
NCBI dbSNP databases, as well as single nucleotide non-synonymous substitutions
in the FAT4 gene found in a patient diagnosed with Hennekam syndrome, on the
structure and function of the proteins. We then selected the most probable
deleterious substitutions in these genes and assessed their impact on protein structure
and function by incorporating the substitutions into the wild-type protein structure

using molecular dynamics simulations.

5.1 - Identification of deleterious nsSNPs in the FAT4, ADAMTS3, and

CCBEL1 genes leading to the development of Hennekam syndrome

In total, 407 nsSNPs in the CCBE1 gene were assessed for their impact on
protein structure and function. Of the 407 nsSNPs, 23 were identified as deleterious
by both SIFT and PolyPhen-2 programs. Information on the minor allele frequency
(MAF) was available for 11 nsSNPs. With the exception of T153N, G107D, P249S,
S19N, C75S, C102S, G327R, C174R, D397Y, R125W, P87W, and G330E, the
calculated frequency of other nsSNPs in the population was less than 1% (Table 14).
Subsequently, all 23 selected nsSNPs were analyzed using an additional 16
bioinformatics tools for predicting the deleteriousness of substitutions on protein

structure and function (Table 15, Figure 48).

Table 14 - Non-synonymous single nucleotide substitutions in the CCBE1
gene assessed by SIFT and PolyPhen2 as deleterious

nsSNP AA SIFT | Score | PolyPhen-2 Score | MAF
rs199902030 | D336N | Del |0.003 | Prob damage 1 <0.001 (T)
rs200149541 | TI53N | Del |0.001 | Prob damage 1
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nsSNP AA SIFT | Score | PolyPhen-2 Score | MAF
rs372499913 | G107D |Del |0 Prob damage 1
rs267605221 | P249S Del |0.007 | Prob damage 1
rs374941368 | S19N Del |0.004 | Prob damage 0.981
rs375717418 | R301W | Del |0.004 |Probdamage |1 < 0.001 (T)
rs80008675 | D4A1E Del L | 0.016 | Prob damage 0.982 |0.017 (T)

rs116596858 | P181S Del L | 0.007 | Prob damage 0.906 |<0.001 (A)
rs116675104 | R167W | Del L | 0.017 | Prob damage |0.990 | 0.003 (A)

rs121908250 | C75S Del L | 0.002 | Prob damage 0.981
rs121908251 | C102S DelL |0 Prob damage 0.999
rs121908252 | G327R | Del |0 Prob damage 1

rs121908254 | C174R | Del |0.001 | Prob damage 0.984
rs147974432 | T144M | Del L | 0.002 | Prob damage 1 <0.001 (A)
rs192224843 | Q353R | Del |0.011 | Prob damage 0.993 |<0.001 (C)
rs115982879 | R118L | Del L | 0.001 | Prob damage 0.910 |<0.001 (T)
rs139059968 | K355T | Del |0.002 | Prob damage 0.883 | <0.001 (G)
rs141125426 | D397Y | Del L | 0.002 | Prob damage 0.828

rs147208835 | R125W | Del L |0 Prob damage 0.995
rs147681552 | P290L Del |0.005 |Probdamage 1 <0.001 (A)
rs148498685 | P87S Del L | 0.002 | Prob damage 1

rs149531418 | G330E |[Del |0 Prob damage 0.999
rs149792489 | A96G Del L | 0.004 | Prob damage 1 <0.001 (C)

Note. Substitution - amino acid substitution in a protein; Del - damaging
substitution, Del L - likely less damaging substitution, Prob damage - probably
damaging substitution. MAF - minor allele frequency.
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Figure 48 - Results of predicting the effects of identified nsSNPs in the CCBE1

For the ADAMTS3 gene, 919 nsSNPs were tested. Only 50 out of the 919
nsSNPs were selected by the SIFT program as fully deleterious, and these 50 were
then analyzed by several tools (Figure 48). Information on minor allele frequency
(MAF) is available for 16 of them, while MAF of other nsSNPs may be less than

1%.

The visual representation of the results of filtering ADAMTS3 gene nsSNPs
through 19 bioinformatics tools for predicting the pathogenicity of substitutions
(including SIFT and Polyphen-2) is presented in Figure 49. All prediction methods
provided statistically significant results. The p-value for the Student's t-test was
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Table 15 - Verification of pathogenicity of 23 identified nsSNPs in the CCBE1 gene by other tools

AA LRT | Mutation | Mutation |PROVEAN [FATHMM|VEST3| MetaL| M- |CADD| DANN |FATHMM-| PhD-SNP |PANTHER |[SNP-GO| SNAP2
Taster | Accessor R CAP MKK

G330E
C102S
C174R
G107D
R125W
G327R
P290L
K355T
Q353R
D336N
T153N
C75S
P87S
T144M
R118L
D397Y
R301W
P249S
D41E
S1ON
R167W
A96G
P181S

0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0/0/0|0/0/0|0
0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0/0/0|0/0/0|0
Z2|Z2|2|0|Z2|Z2|0|0(Z2|0|Z2|0|0|0,0,2|Z2|0/0/0|0|0
0| Z2|0/0/0/0/0/0/0/0/0/0 0000000000
ZZz|1Z|IZ|1Z|1Z|Z2|1Z2|Z2|Z2|1Z2|Z2|Z2|2|2|Z2|Z2|2|0(|0|0|0
ZmzZ Z|Zimmmmim|m| m|m|m|m|mjmjm|m|mjm|m

Z|0|Z|Z2|0|0|0|Z2|0|0|0|0|0|0|0|00|0|0|0|0|0|0
0|0|0|1v 1000000000 000000000
Z|Z2|Z2|1Z2|Z2|Z2|0|0|0|Z2|Z2|0|Z2|2|Z2|Z2/0|0|0(0|0|0|0
—|—|0|0|0|H|H|0|0|0|0|0|0|0|0|0|H|0/0|0|0|0|0
o|g|H|H|H|/H/0|H/0|0|0|0|H|H|0|0|0|0|H/0|0|0|0
—|4|0|0|4|0|H|0|-|0|0|0|0|0|0|0|0|0|0|0|0|0|0
—H|0|0|0|H|0|0|H|0|0|0|-H|0|0|0|0|0|0|0|0|0|0|C
0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0/0/0|0/0/ 0|00

L D |D N N N N

Note: A.A —amino acid substitution in the molecule; the following columns — mutation pathogenicity prediction programs.
D — damaging substitution, T —tolerant; N — neutral; L — low, M — moderate, H — high probability of pathogenicity; P — pathogenic,
E — effect.
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Figure 49 - Results of predicting the impact of identified nsSSNPs in the
ADAMTS3 gene analyzed by 19 bioinformatics tools for predicting the
pathogenicity of mutations (including SIFT and Polyphen-2)

For the FAT4 gene, out of 3434 nsSNPs, SIFT and PolyPhen-2 predicted a
total of 298 harmful or damaging nsSNPs. Only 70 nsSNPs had minor allele
frequency (MAF) information available. Except for the substitutions G4361, S4710,
AT785, G1822, D1124N, R2285, R3128, R4726, H1513, S2098, A2959, T1914,
V5431, R2285, K294R, and G412, other MAFs for nsSNPs in the FAT4 gene had a
value of less than 1%. After applying 18 different bioinformatics tools to predict the
pathogenicity of substitutions, only 11 nsSNPs - D2978G, V986D, Y1912C,
R4799C, D1022G, G4786R, D2439E, E2426Q, R4643C, N1309l, Y2909H - were
considered high-risk polymorphisms that could affect the structure and function of
FAT4, even though SIFT considered all 11 substitutions to be damaging with low
probability (above >0.5, but below <0.8 on the SIFT scale) (Table 16-17, Figure 50).



Table 16 - Verification of the pathogenicity of 11 identified nsSNPs in the FAT4 gene using other in-silico tools

AAS Mutetion | Mutetion | FATH | PROVEAN | VEST3 | MTA | METALR | M- | CADD | DANN | FATHMM- | PhD- | PANTHER | SNP- | SNAP2 | P-
Taster Acoessor | MM SVM CAP MKK SNP GO Mut
D2978G | D M T D D D D D D D D D D D D D
V986D D H D D D D D D D D D D B D D D
Y1912C | D M T D D D D D D D D D D D D D
R4799C | D L D D D D D D D D D D D N D D
D1022G | D H T D D D D D D D D D D D N D
G4786R | D L D D D D D D D D D D D N D D
D2439E | D M T D D D D D D D D D D N D D
E2426Q | D H T D D D D D D D D D D D N D
R4643C | D L D D D D D D D D D D D D D N
N1309I D H T D D D D D D D D D D D N D
Y2909H | D H T D D D D D D D D D D D N D

Note. Substitution - amino acid substitution in the protein; D - damaging substitution; N - neutral; L - low, M - medium, H -
high probability of pathogenicity; B - benign substitution.

Table 17 - Assessment of the filtered 11 nsSNPs in the FAT4 gene and their minor allele frequency in the population.

nNSSNP AAS SIFT Score PolyPhen-2 Score MAF
rs147663284 D2978G Del-Low 0.005 Prob-Damaging 0.99

rs192514171 V986D Del-Low 0 Prob-Damaging 1.00

rs138137489 Y1912C Del-Low 0.001 Prob-Damaging 1.00

rs199895179 R4799C Del-Low 0 Prob-Damaging 1.00 <0.001 (T)
rs372060616 D1022G Del-Low 0 Prob-Damaging 1.00

rs138173652 G4786R Del-Low 0 Prob-Damaging 1.00 <0.001(A)
rs142184187 D2439E Del-Low 0 Prob-Damaging 0.99

rs147633644 E2426Q Del-Low 0 Prob-Damaging 1.00

rs181607904 R4643C Del-Low 0 Prob-Damaging 1.00 <0.001 (T)
rs184971791 N1309I Del-Low 0 Prob-Damaging 0.99

rs148655455 Y2909H Del-Low 0 Prob-Damaging 1.00
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Figure 50 - Results of predicting the impact of identified nsSNPs in the FAT4
gene, analyzed by 18 bioinformatics tools for predicting the pathogenicity of

mutations (after filtering by SIFT and Polyphen-2)

5.2 - Prediction of protein stability including non-synonymous
substitutions in the genes FAT4, ADAMTS3, and CCBE]1, identified in the

previous stage

To analyze the stability prediction of CCBEL, the web tool iStable 2.0 was
used. This web tool consists of 11 sequence- and structure-based prediction tools,
and machine learning approach is used for all results. The results showed that
substitutions G330E, C174R, G327R, P290L, D41E, A96G, T114M, D397Y, S19N,
and Q359RT increase stability, while amino acid substitutions P249S, R167W,
R301W, C75S, P87S, R118L, T153N, D336N, R125W, K355T, G107D, and C102S
decrease the stability of the CCBE1 protein. No data could be obtained for the
substitution P181S in the iStable 2.0 program.
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Table 18 - Predictions of iStable 2.0 on the stability of the CCBE1 protein,

taking into account the identified amino acid substitutions

AAS Realibality score Impact on Protien
G330E -0.002680719 Increase
Cl74R 0.021838337 Increase
C102S -1.2213084 Decrease
G107D -0.86388123 Decrease
R125W -0.85255766 Decrease
G327R 0.0042461157 Decrease
P290L 0.2298831 Decrease
K355T -0.052274585 Increase
Q353R 0.8725257 Increase
D336N -1.2082165 Decrease
T153N -0.546193 Decrease

C75S -1.0542232 Decrease

P87S -1.9976869 Decrease
T144M 0.23297998 Increase
R118L -0.5704589 Decrease
D397Y 0.071232796 Decrease
R301W -0.3441298 Decrease
P249S -1.1325055 Decrease

D41E 0.4703572 Increase

S19N 0.77003396 Increase
R167W -0.4350294 Decrease
A96G -0.041893244 Increase

The programs I-Mutant 3.0 and MUpro were used to evaluate 50 nsSNPs with
high risk of affecting the stability of the ADAMTS3 protein. The protein stability
disruption prediction (AAG) in I-Mutant 3.0 showed that 47 nsSNPs decrease
stability (AAG < 0) while 3 nsSNPs increase stability (AAG > 0). MUpro identified

48 nsSNPs that individually decrease protein stability. VVariants with substitutions of
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S1038F, S58F, and D791V (as per I-Mutant) as well as R576L, R954H, and G412S
(as per MUpro) were identified as increasing protein stability. Calculations showed
that the structure and function of the protein would be disrupted by 19 variations,
which included V395I, A336V, G298R, Q616H, Q927H, S1038F, G374S, D815Y,
R94L, G983S, Q588H, G25H, R565W, R817C, R713L, R55L, N98S, Y636S,
R576L, R1053C, D791V, G412S, and L8O01F. All of these variants showed AAG
values less than -1 kcal/mol as determined by these two tools.

Using the same tools, I-Mutant 3.0 and MUpro (by comparing free energies),
the impact of the 11 nsSNPs identified in the FAT4 gene on the stability of the

corresponding protein was evaluated (Table 19).

Table 19 - Prediction of the impact of identified amino acid substitutions on

the stability of the FAT4 protein (using I-Mutant 3.0 and MUpro)

AAS Stablity on Protien AAS Stablity on Protien
D2978G Decrease D2439E Decrease
V986D Decrease E2426Q No data
Y1912C Decrease R4643C Decrease
R4799C Decrease N1309I Decrease
D1022G No data Y2909H Decrease
G4786R Decrease

5.3 - Analysis of the preservation of identified substitutions in
conservative regions of CCBE1, ADAMTS3, and FAT4 proteins

An investigation of the effect of 23 substitutions in the CCBEL gene on the
CCBE1 protein using the ConSurf service showed that 13 substitutions were located
in highly conserved regions of the protein. Eleven of them (C75S, P87S, P290L,
A96G, G107D, R118L, G330E, D336N, R125W, Q353R, and T153N) were
predicted to be functional and exposed residues, while the other two, C102S and
C174R, were predicted to be buried and structural amino acid residues. The

substitution S19N was predicted to be a conservative and buried residue, while the
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remaining eight (T144M, R167W, P249S, R301W, G327R, K355T, D397Y, and
D41E) were predicted to be exposed amino acid residues (on the surface of the
protein). The results are shown in Figure 51.
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Figure 51 - Location of amino acid substitutions in the CCBEL1 protein with
consideration of evolutionary conservation and the location of different protein
regions according to the ConSurf service

Note: A value of 1 indicates a highly variable region, while 9 indicates the
most evolutionarily conserved region.

A similar study was conducted for ADAMTS3 and the identified 50 nsSSNPs.
Twenty-six out of the 50 missense variants were identified as located in highly
conserved regions. Nineteen out of 26 (Q927R, G298R, C567Y, C567R, Q616H,
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R565W, R565Q, P371S, P513T, R248H, T668M, R435H, N98S, R883C, G412S,
L801F, S1038F, G983S, R959W) were expected to be functional and exposed
residues, while the remaining 7 (1291T, V395I, A336V, G374S, S58F, 1287F, and
A370T) were expected to be buried and structural residues. In addition, conserved
and buried residues were shown to have substitutions at F81L, Y148C, R435H,
Y536C, M731T, F777L, R94L, R270H, P510A, R572C, R572H, Q588H, R713L,
R817C, R943H, and R954H. Furthermore, eight substitutions were located on the
surface (G25V, R55L, P77T, R137W, Y636C, D791V, D815Y, and R1053C).
Among the 11 nsSNPs with high risk of pathogenicity, 7 (D1022G, N1309l,
D2439E, E2426Q, R4799C, G4786R, and R4643C) were predicted to be functional
and exposed residues, while the remaining 3 (V986D, Y1912C, Y2909H) were
expected to be buried (Figure 52).

For the FAT4 protein, ConSurf showed that many of the amino acid
substitutions previously identified as having a high impact risk on the protein were
located in highly conserved regions. Seven out of 11 nsSNPs (at positions 1022,
1309, 2439, 2426, 4799, 4786, and 4643) were expected to be functional and
exposed residues, while the remaining were considered to be buried. The substitution
of G4786R was considered as structurally buried amino acid residue, while the
substitution of G298 affected an exposed region of the protein. Due to its size, no

image is provided for the FAT4 protein.
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Figure 52 - Location of amino acid substitutions in the ADAMTS3 protein with
consideration of evolutionary conservation and location of different protein regions
according to the ConSurf service

Note: a value of 1 indicates a high variability region, while 9 indicates the
most evolutionarily conserved region.



145

5.4 - 3D modeling of wild-type and mutant CCBEL1 protein structures

To model the 3D structures of the wild-type CCBEL protein and 22 mutant
types, Phyre2 was used to predict the 3D structures of the mutant proteins. The
model c5to3B was chosen as a template for predicting the 3D model of CCBEL in
Phyre2. The model for the R118L (rs115982879) mutant showed the greatest
deviation, with an RMSD value of 1.56B, followed by A96G (rs149792489), S19N
(rs374941368), and C174R (rs121908254) with RMSD values of 1.50B, 1.44B, and
1.46B, respectively. R125W, C75S, and T153N showed RMSD values of 0.89B,
0.90B, and 0.85B, respectively, indicating no structural changes compared to the
wild-type. Other amino acid substitutions showed little effect on the 3D structure of
CCBEL. These were G327R (1.36B RMSD), P290L (1.3.6B RMSD), Q353T
(1.3.2B RMSD), P290L (1.25B RMSD), D336N (1.25B RMSD), C102R (1.22B
RMSD), R167W (1.16B RMSD), P87L (1.14B RMSD), G107D (1.13B RMSD),
T144M (1.13B RMSD), G330R (1.12B RMSD), D41E (1.12B RMSD), D297Y
(1.06B RMSD), R301W (1.02B RMSD), and K355T (1.01B RMSD). The TM
coefficients and RMSD values are presented in Table 16. The four nsSSNPs (R118L,
A96G, S19N, and C174R) with the highest RMSD values were selected and
submitted to I-TASSER for remodelling. The protein structure obtained using I-
TASSER is the most reliable as it is the most modern modelling tool. Each of these
three mutants was studied and superimposed on the wild-type CCBEL protein using

Chimera 1.11, as shown in Figure 53.
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Figure 53 - (A) Structure of wild-type CCBEL protein. (B) Superimposed structure
of CCBEL1 and its C174R mutant. (C) Superimposed structure of CCBE1 and its
A96G mutant. (D) Superimposed structure of CCBEL and its R118L mutant.

Visualization of Phyre2 model results in Chimera 1.11 program

We conducted an assessment of ligand binding sites using FTSite, i.e., the
analysis of protein CCBE1 docking and the evaluation of the impact of identified
single nucleotide polymorphisms (SNPs) on docking. Ligand binding sites were
predicted using FTSite algorithms, visualized, and further analyzed using PyMOL.
With this tool, three ligand binding sites were identified in human CCBEL1 protein.
Site 1 consisted of 14 amino acid residues; site 2 and site 3 consisted of 7 and 5
residues, respectively. Some of the 22 amino acid substitutions predicted by the

SIFT server as potentially deleterious were localized in the presumed ligand binding
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sites (T153N and R167W). These results were not further utilized but were published
and provided in additional files to the publication on this topic.

A set of various software programs was used to predict post-translational
modifications. Specifically, GPS-MSP 3.0 showed the absence of methylation sites
in CCBEL1. Programs GPS 3.0 and NetPhos 3.1 predicted phosphorylation sites in
CCBEL, regions with potential for phosphorylation. BDM-PUB and UbPred were
used to predict ubiquitination. In particular, BDM-PUB predicted the ubiquitination
of 11 lysine residues. The NetOGlyc4.0 program was used to predict potential
glycosylation sites and loss of glycosylation in certain regions due to the described
substitutions. These results were not further utilized but were published and

provided in additional files to the publication on this topic.

5.5 - 3D Modeling of ADAMTS3 Protein Structures of Wild-Type and
Mutant Types

The structures of wild-type and mutant types of ADAMTS3 were predicted
using AlphaFold 2. Visualization was performed using Chimera 1.3. In modeling
the mutant structure, 25 mutations were included. 21 of these mutations, including
S58F, 1291T, G298R, A336V, A370T, P371S, G374S, G412S, R435H, Y536C,
R565W, C567R, R572C, R576L, Q616H, Y636C, T668M, R883C, R954H,
R959W, and G983S, were confirmed by several programs as deleterious (C567Y
was not included because it occupies the same position as C567R), and four of them
(R138K, R574C, C578L, and Q606H) were found to be clinically relevant. The
wild-type and mutant models were validated by Ramachandran plots and analysis of
all-atom contacts using the MolProbity program. The wild-type model shows 1032
residues (85.8%) in the favored region, 77 (6.4%) in the allowed region, and 94
(7.8%) in the outlier region, with a total of 1109 residues (92.2%) in the favored and
allowed regions. The mutant model shows 1008 residues (83.8%) in the favored
region, 110 (9.1%) in the allowed region, and 85 (7.1%) in the outlier region, with a
total of 1118 residues (92.9%) in the favored and allowed regions.
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For all-atom contact analysis using MolProbity, the wild-type protein showed
a score of 3.61, while the mutant protein showed a score of 1.88, which is an
acceptable value.

The structures can be divided into three segments (segment 1: Met1-Pro466;
segment 2: Lys467-Val831; segment 3: Pro832-Arg1205), which are connected by
loops (Figure 54). Segment 3 of both proteins consists mainly of loops without many
secondary structures, so we consider it an inaccurate prediction and ignore it for

further analysis.

Segment 2

Segment 3

Figure 54 - Segmented structure of the ADAMTS3 protein using the example of
the wild-type molecule: segment 1 (residues 1-466), segment 2 (residues 467-831),
and segment 3 (residues 832-1205). These three segments are connected by loops.
Segment 3 consists mainly of loops (result of the AlphaFold2 model visualization

in the Chimera 1.3 software)

We mainly focused on segments 1 and 2, which contain extensive secondary
structures. We assume that there are minor interactions between segments, so
mutations in one segment will not have a significant impact on the other. The
superimposition of the wild type and mutant ADAMTS3 structures (Figure 55)
shows an RMSD value of 30.367 A.
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Figure 55 - Overlapping structures of wild type and mutant ADAMTS3

(visualization result of the model from AlphaFold2 in the Chimera 1.3 program)

In order to assess the impact of high-risk pathogenic amino acid substitutions
on ligand binding sites, docking analysis of mutant types of ADAMTS3 was
performed. Binding sites of ADAMTS3 protein were predicted using the RaptorX
Binding server (with a pocket multiplicity value of more than 40) and the COACH
ligand binding site prediction server. The RaptorX Binding analysis determined a
pocket multiplicity of 151, which is the highest value, and linked it to residues that
are subject to G365, M366, Q367, G368, Y369, V395, H398, E399, H402, H408,
A426, P427, L428 and V429 substitutions, with the expected Zn2+ cation ligand.
The COACH server predicted a Zn2+ cation binding site with a C-score of 0.15
located on residues H398, H402 and H408. Second-ranked sites identified by
COACH were associated with Co2+ cation on residues E259, L334, 351, 355 and
356.
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Additionally, we studied the effects of each mutation and how they impact
neighboring structures. In the Project HOPE, the effects of 50 selected non-
synonymous single nucleotide polymorphisms (nsSNPs) in ADAMTS3 on amino
acid sizes, charges and hydrophobicity were analyzed. Among these nsSNPs, 26 led
to a decrease in amino acid size, while 22 led to an increase. Charge was altered in
23 regions, with 20 changing from positive to neutral, one changing from neutral to
positive, and two changing from negative to neutral. Hydrophobicity decreased in
seven mutations, while 22 others led to its increase. These results suggest that
changes in amino acid properties at these positions may affect the protein structure
and its interaction with other molecules, ultimately affecting the protein's function.
Local 3D structures of the aforementioned 25 mutations included in AlphaFold
protein models were also investigated. The results show that most mutations do not
have a significant impact on the sequence structure in the vicinity of the amino acid
substitution position in the 25 mutations. Only the Y536C substitution has a
significant disruption in the secondary structure compared to other mutations (Figure
56). The remaining 3D structure images altered after amino acid substitutions are

presented in the article's appendix and are not included in this dissertation.
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Figure 56 - Alteration in the three-dimensional structure of ADAMTS3 due to the
Y536C amino acid substitution. The mutation sites are colored in green. Results
from Project HOPE
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A calculation of the overall post-translational modifications, including
methylation, phosphorylation, ubiquitination, and glycosylation, was also conducted
for the wild-type ADAMTS3 structure and mutant. GPS-MSP predicted the absence
of methylated sites in ADAMTS3. The predicted serine, threonine, and tyrosine
phosphorylation sites by different kinases differ between NetPhos 3.1 and GPS 6.0,
with GPS 6.0 predicting more phosphorylation sites than NetPhos 3.1 for both
structures. Interestingly, some phosphorylation sites appear and disappear after
mutation. GPS 6.0 shows the disappearance of sites on Ser58, Tyr536, Tyr636, and
Thr668, and the appearance of new sites on I1e291, Ala370, Pro371, Gly374,
Gly412, and Gly983, while NetPhos 3.1 shows the disappearance of sites on Tyr56,
Ser58, and Ser957 and the appearance of new sites on 11e291, Pro371, Gly374,
Gly412, and Gly983. Most of these changes are in mutation sites involving serine,
threonine, and tyrosine. More changes in phosphorylation sites are observed in
segment 1. For ubiquitination, UbPred detected 9 lysine residue ubiquitination sites
in both the wild-type and mutant structures, while BDM-PUB detected 37 and 36
ubiquitinated lysine residues in the wild-type and mutant proteins, respectively, and
after mutation, there are several new and disappeared ubiquitination sites, most of
which are in segment 3. Analysis using NetOGlyc4.0 predicted all possible O-
glycosylation sites in both proteins, and some mutants lost or gained glycosylation
at certain positions, most of which are located in segment 3. These results were not
further utilized but are published and provided in additional files accompanying the

publication on this topic.

5.6 - 3D modeling of protein structures of wild-type and mutant types of
the FAT4 protein

We created five models of the FAT4 protein using I-Tasser and evaluated their
quality and the impact of mutations on the structure of the mutant protein. Due to
the large size of FAT4, we only modeled those protein sequences where mutations
were detected in our clinical case (already published) as well as the most deleterious

mutations obtained from the above in-silico study.
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Then, using the QMEAN score, Prosa Z-score, and Ramachandran plot
analysis, each structure was evaluated for reliability. A more positive QMEAN score
indicated the best protein model, while Prosa scanned the structure models and
compared them to PDB crystal structures to determine their quality. Based on the
QMEAN score, Prosa Z-score, and Ramachandran plot analysis, the selected models
were optimized by energy minimization using UCSF Chimera (Figure 57). The 3D

models of sequences 2-5 regions are presented in the supplemental materials of this

article.
Pon—al
| ) ;\) N ez Vo

e A A P & — o ~ STy o T D
fr\\/r A »;/ = 2%73 ( 4 ?/ 7 -— el = - .7\\/ y =

A L= 2 '?,;x‘z 7 O —

SN T SRy S S R

X 7 A

Figure 57 - Overlay of 3D models of FAT4, sequence 1, containing substitutions
A807V, V986D, D1022G, and N1309l. Yellow represents the wild-type FAT4,

blue represents the mutant variant of FAT4 with red highlighting of the mutations

The consequences of 11 investigated amino acid substitutions in FAT4 on
amino acid size, charge, and hydrophobicity were analyzed in Project HOPE. Four
mutant amino acids were larger than their wild-type counterparts, while six mutant
amino acids were smaller. Charge was altered at eight different sites: 2 from positive
to neutral, 1 from neutral to positive, 3 from neutral to negative, and 2 from negative
to neutral. Analysis showed that hydrophobicity was decreased in five mutations and
increased in four others. These results suggest that amino acid mutations affect
protein function by altering protein structure and interaction with other components.
The most deleterious nsSSNPs, which were found to have a possible model template,
were Y1912C (5DZY), D2439E (1L3W), E2426Q (1L3W), D2978G (5W1D), and
Y2909H (1L3W). They provide a unique conformation to the central axis of the
molecule. However, these results were not further used and were published as

supplementary data to the article on this topic.
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Before constructing the 3D model of FAT4, we predicted the secondary
structure of FAT4 using the SOPMA program, which helped to refine the
distribution of alpha helices, beta sheets, and random coils. Analysis of the
secondary structure showed the presence of 49.31% random coils (1148), followed
by 36.90% extended strands (859), 8.98% alpha helices (209), and 4.81% beta sheets
(111). The distribution of amino acid substitutions in secondary structures was not
further considered, but the data were published as supplementary material to the
article on this topic.

In analyzing the possible impact of amino acid substitutions on post-
translational modifications in the FAT4 protein, the GPSMSP 3.0 program did not
provide information on methylation in this protein. NetPhos 3.1 predicted a
phosphorylation site for 579 residues. The UbPred tool predicted that none of the
lysine residues could be ubiquitinated. In contrast, BDMPUB predicted that 101
lysine residues could be ubiquitinated, but none of them were included in the list of
analyzed amino acid substitutions. Sites of glycosylation were also evaluated using
SUMOylation. These results were not further used, but were published and provided

in additional files to the publication on this topic.

5.7 - Molecular Dynamics Modeling of Wild-Type and Mutant
ADAMTS3

The change in the root-mean-square deviation (RMSD) values of the Ca
atoms of wild-type and mutant ADAMTS3 is presented in Figure 58. For segment 1
of both the wild-type and mutant structures, equilibrium is reached after 130 ns, after
which the RMSD values of the two structures do not differ significantly, indicating
that mutations in segment 1 do not greatly affect the structure (wild-type: mean
10.830 A, SD 0.169 A; mutant: mean 11.109 A, SD 0.157 A). However, for segment
2, the wild-type protein reaches stability in just under 10 ns. After this, the system
equilibrates, and the modeling converges throughout the entire runtime, but the
RMSD values of the mutant protein fluctuate more compared to the wild-type

structure throughout the modeling. The mutant structure has a higher RMSD,
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indicating that mutations in segment 2 destabilize this part of the protein more (wild-
type: mean 5.31 A, SD 0.344 A; mutant: mean 14.312 A, SD 0.584 A).

The regions of the proteins that fluctuate the most during modeling are shown
as peaks on the RMSF graphs (Figure 59). B-sheets and a-helices are often more
rigid and less variable than the unstructured component of the protein. In segment 1,
although the peak on residues Asn119-Pro129 is higher for the wild-type structure,
the RMSF of the wild-type and mutant structures are overall similar. This shows that
mutations in segment 1 do not significantly stabilize or destabilize the structure. In
segment 2, the overall RMSF of the mutant structure is higher than that of the wild-
type, indicating that mutations have destabilized the structure in this segment. There
is a large difference in RMSF in residues Met478-Pro523, indicating that this region

is the most destabilized.
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Figure 58 - Root mean square deviation (RMSD) of the Co atoms of wild-type
(red) and mutant (blue) ADAMTS3 protein segments 1 (A) and 2 (B) over time.
For segment 1 (A), there is little difference in the equilibrium RMSD between the
wild-type and mutant structures. For segment 2 (B), there is a significant difference
between the RMSD values. All mean values and SD were calculated from values
after 170 ns
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Figure 59 - Root Mean Square Fluctuation (RMSF) for each segment of wild-type
(red) and mutant (blue) ADAMTS3 protein. Panel A shows the RMSF for segment
1, and the RMSF values for wild-type and mutant structures are similar

In panel B, the overall RMSF for the mutant structure is higher than that of
the wild-type structure for segment 2, indicating that mutations destabilized the
structure in this segment. There is a large difference in RMSF for residues Met478-

Pro523, indicating that this region is the most destabilized.

In addition, the average distributions of protein secondary structure elements
are calculated during the simulation at 170 ns. For segment 1 (Figure 60), the
percentage of average a-helix secondary structure decreased by 5.15% in the mutant
structure compared to the wild type, but an increase of 3.86% in the percentage of
310-helices was observed, which may stabilize the mutant structure and counteract

the destabilizing effect of a-helix disruption by mutations, along with an increase of
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1.50% in the percentage of turns. For segment 2 (Figure 61), a decrease of 5.48% in
the percentage of B-sheets and an increase of 4.11% in the percentage of turns were
observed, which may destabilize the overall structure of the mutant protein in this

segment. Additionally, the percentage of a-helices also increased by 1.10%.
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Figure 60 - Distribution of secondary structures in segment 1 after 170 ns of

molecular dynamics simulation

Figure 62 shows the distribution of secondary structure elements in segment
1 of both wild-type and mutant ADAMTS3. Examining the distribution of changes
in secondary structure in different residues in segment 2 (Figure 63), we observe that
B-sheets are disrupted in residues Lys491-Met492, Trp506-His509, and Asn512-
Thr518, which may be the cause of the increased RMSFs in residues Met478-Pro523
in the mutant structure.
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Figure 61 - Distribution of secondary structures in segment 2 after 170 ns of
molecular dynamics simulation
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Figure 62 - Analysis of secondary structure in segment 1 after 170 ns of molecular
dynamics simulation. Secondary structure elements of wild-type and mutant types
of ADAMTSS3. Mutated amino acids are marked in red
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We also observe that there are no significant changes in the secondary
structures near the positions of most of the investigated substitutions. There is no

amino acid substitution in the residues of the aforementioned disrupted B-sheets.
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Figure 63 - Analysis of secondary structure in segment 1 after 170 ns of molecular
dynamics simulation. Secondary structure elements of wild type and mutant

ADAMTS3 are shown. Mutated amino acids are marked in red

Also, the radius of gyration (Rg) analysis is conducted. Two of the most
important indicators for determining the structural activity of a macromolecule are
Rg determination and calculation of the distance to the center of mass of the
molecule. The speed at which the protein folds is proportional to its compactness

and can be measured using a complex computer method for calculating the radius of
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gyration. From the analysis of the radius of gyration of wild-type and mutant
ADAMTSS structures, it can be observed that the mutant type showed overall higher
Rg values throughout the simulation time scale compared to the wild type in
segments 1 and 2, but the difference for segment 1 is not as significant (wild type:
mean: 23.339 A, SD: 0.082 A; mutant: mean: 23.984 A, SD: 0.139 A) as for segment
2 (wild type: mean: 27.648 A, SD: 0.163 A; mutant: mean: 33.564 A, SD: 0.402 A).

As a result, the flexibility of the mutant protein is increased (Figure 64).
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Figure 64 - Radius of gyration of wild-type and mutant protein segments 1 and 2.

All mean values and SDs were calculated from values after 170 ns

The analysis of the solvent-accessible surface area (SASA) showed that the
mutant structure has a higher SASA value than the wild type for segments 1 and 2
(Figure 65). (Wild type segment 1: mean value: 21906.066 A2, SD: 282.987 A2;
mutant: mean: 22675.036 A2, SD: 453.033 A2; wild type segment 2: mean:
21565.973 A2, SD: 245.14 A2; mutant: mean: 22160.942 A2, SD: 269.095 A2).
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Since a higher SASA value indicates protein expansion, it can be assumed that the
wild type is more stable than the mutant protein. The more significant change in
SASA value may be due to the amino acid substitution effect, which changes the

protein surface size, its hydrophilicity, and other characteristics.
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Figure 65 - Solvent accessible surface area (SASA) (in A2) of wild type and
mutant type ADAMTS3 segments 1 (A) and 2 (B)

For both segments, the SASA of the mutant structure is higher than that of
the wild type. All mean values and SDs were calculated from values after 170 ns.

During the molecular dynamics simulation, the difference in the number of
hydrogen bonds (H-bonds) was also calculated (Figure 66). For segment 1, it is
insignificant, which once again indicates that the destabilization effect for
substitutions in this segment is small (wild-type: mean: 396.854, SD: 7.427; mutant:
mean: 392.351, SD: 9.540). For segment 2, it can be noted that the wild-type

structure forms a greater number of H-bonds, while the mutant structure
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demonstrates a lower number of H-bonds, which may affect the stability of the
mutant protein (wild-type: mean: 263.192, SD: 6.421; mutant: mean: 255.709, SD:

9.473).
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Figure 66 - Total number of hydrogen bonds throughout the simulation of wild-
type and mutant ADAMTS3 protein segments 1 and 2. All mean values and SDs

were calculated from values after 170 ns

Principal component analysis (PCA) was used in this study to analyze the
trajectories and structures of wild-type and mutant ADAMTS3 proteins in segments
1 and 2. The PCA plots show the collective motions of the protein system projected
onto the first two principal components.

The plots for segments 1 and 2 (Figure 67) indicate a significant difference in
the trajectories and motions of wild-type and mutant protein systems. In segment 1,
the plots for wild-type and mutant structures largely overlap, indicating that

mutations in this segment have a minor impact on the collective motions of the
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protein. However, in segment 2, there is less overlap between the plots for wild-type
and mutant structures, indicating that mutations in this segment have a greater

impact on the collective motions of the protein.
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Figure 67 - PCA plots of trajectory analysis for segments 1 (A) and 2 (B) of wild-
type and mutant ADAMTS3 proteins. The trajectories of wild-type and mutant

structures are represented by blue and red dots, respectively

Free energy landscape (FEL) plots are constructed after PCA analysis using
the first two principal components. In the FEL plots (Figure 68), the conformation
with the lowest energy is depicted in dark blue. For segment 1, the lowest energy for
the wild-type structure is 12.2 kJ/mol, while for the mutant structure, it is 10.9
kJ/mol. For segment 2, the lowest energy for the wild-type structure is 7.80 kJ/mol,
while for the mutant structure, it is 9.08 kJ/mol. For both segments, wild-type and
mutant structures in ADAMTS3 demonstrate differences in the number and position
of stable conformations that correspond to local minima in the FEL plots. This
suggests that the mutations have influenced the overall conformational stability of

the protein.
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Figure 68 - Free energy landscape (FEL) analysis. The Gibbs energy is plotted as a
function of the first two principal components (PC1 and PC2) for segments 1 and 2
of wild-type and mutant ADAMTS3. The conformation with the lowest energy is
denoted by dark blue color

5.8 - Molecular dynamics simulation of wild-type and mutant FAT4

protein

The FAT4 protein consists of 4981 amino acid residues, making it a very long
protein that needs to be divided into multiple fragments for modeling. In this study,

we created five models: model 1 = sequence of 540 amino acid residues; model 2 =
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600 residues; model 3 = 660 residues; model 4 = 600 residues; and model 5 = 420
residues. Multiple simulations of these sequences were conducted.

The changes in the root-mean-square deviation (RMSD) values of Ca atoms
of wild-type and mutant FAT4 are presented in figures 69-73. Figure 69 shows that
the wild-type protein reaches stability almost after 30 ns, and then the system
converges and equilibrates after 60 ns. The RMSD values of the mutant protein
deviate, and after 60 ns, the RMSD constantly increases until the end of the
simulation. Therefore, the model 1 protein deviates more compared to the wild-type
throughout the simulation. These results indicate that the wild-type protein is more

stable than the mutant protein for model 1.
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Figure 69 - Root-mean-square deviation (RMSD) of FAT4 protein Ca atoms for

wild-type (blue) and mutant model 1 (red) over time
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Figure 70 - Root-mean-square deviation (RMSD) of the Ca atoms of wild-type
(blue) and mutant model 2 (red) of the FAT4 protein over time
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Figure 71 - Root Mean Square Deviation (RMSD) of the Ca. atoms of wild-type
(blue) and mutant model 3 (red) of FAT4 protein over time
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Figure 72 - Root mean square deviation (RMSD) of the Ca atoms of wild-type
(blue) and mutant model 4 (red) of FAT4 protein over time
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Figure 73 - Root-mean-square deviation (RMSD) of the Ca atoms of wild-type and

mutant model 5 of FAT4 protein over time

Similarly, for model-2, after 28 ns, there were fewer deviations in the wild-
type protein and the system remained equilibrated throughout the simulation.
However, for the mutant variant, an increase in RMSD was observed almost at 30
ns and a larger deviation was observed until 100 ns (Figure 70).

RMSD for model-3 is shown in Figure 71. For the wild-type protein, there

was a small deviation at almost 80 ns, after which the simulation converged, while
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for the mutant type, RMSD continuously increased after 25 ns. This indicates greater
stability of the wild-type protein compared to mutant model 3.

Similarly, for model-4 and model-5, the wild-type FAT4 is more stable than
the mutant models. The protein regions that fluctuate the most during simulation are
shown as peaks in the RMSF graph (Figures 74-78). Protein tails (both N- and C-
termini) undergo changes more often than other regions of the protein. Alpha helices
and beta sheets, for example, are usually more rigid and less fluctuating than the
disordered parts of the protein. Residues with higher peaks, according to the
trajectories, correspond to loop regions or N- and C-terminal zones. RMSF shows
that there are more fluctuations in the mutant models compared to the wild-type
FAT4 protein.
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Figure 74 - Root mean square fluctuation (RMSF) of FAT4 wild-type (blue) and
mutant model 1 (red) a-carbons over time
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Figure 75 - Root Mean Square Fluctuation (RMSF) of FAT4 protein's a-carbon

atoms for the wild-type (blue) and mutant model 2 (red) over time
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Figure 76 - Root-mean-square fluctuation (RMSF) of FAT4 protein's Ca atoms for
the wild-type (blue) and mutant model 3 (red) over time
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Figure 77 - Root Mean Square Fluctuation (RMSF) of the FAT4 wild-type (blue)

and mutant model 4 (red) a-carbon atoms over time
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Figure 78 - Root mean square fluctuation (RMSF) of the a-carbon atoms of wild-

type FAT4 protein (blue) and mutant model 5 (red) over time

The average distributions of the secondary structure elements (SSE) of the
protein were also calculated during the 170 ns simulation. Alpha helices (in orange)
and beta sheets (in blue) were tracked as SSEs among other elements of the protein's
secondary structure. For wild type protein in model-1, the simulation showed 0.83%
helices and 35.49% beta strands, alongside 36.33% SSE, whereas the mutant protein

showed 1.33% helices and 36.05% beta strands, alongside 37.38% SSE. For model-
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2, the wild type protein showed 0.37% helices and 35.25% beta strands, alongside
35.62% SSE, whereas the mutant protein showed 1.63% helices and 34.43% beta
strands, alongside 36.06% SSE. Similar analyses were performed for other models,
and these data, along with graphical representations of the results, were published in
the corresponding article. These results were not of principal importance for further
analysis but were taken into account.

The analysis of the radius of gyration (Rg) of the wild type protein and mutant
models showed that the mutants exhibited a higher Rg value on the simulation time
scale compared to the wild type. Consequently, the flexibility of the mutants
increased (see Figure 79). Similar analyses were performed for other models, and
these data, along with graphical representations of the results, were published in the

corresponding article.
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Figure 79 - Analysis of radius of gyration over time during modeling of wild type
(left) and mutant (right) variants of FAT4 models 1 (top) and 2 (bottom)

Analysis of the energetic parameters for mutant and wild type models shows

that the total energy of the mutant system was increased compared to the wild type,
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but not equally for different models. The largest differences were observed for

models 1, 2, and 3, while the smallest were observed for models 4 and 5.

5.9 - Assessment of the impact of non-synonymous single nucleotide
variants on the structure and function of the FAT4 protein identified in a
patient with Hennekam syndrome phenotype

We conducted an identification of the impact of missense mutations in the
FAT4 gene, as well as missense mutations p.A807V, p.G3526D, and p.S3875N,
which we obtained through VCF from the whole genome data of a patient suspected
of having Hennekam syndrome (Table 20). Using multiple algorithms and tools,
these substitutions were evaluated as deleterious. By including these amino acid
substitutions in the models during molecular dynamics simulation of the FAT4
protein, we tested the hypothesis that these mutations disrupt the structure and

function of the protein.

Table 20 - Overview of nsSNPs in the FAT4 gene obtained from the analysis
of whole genome sequencing of a patient with Hennekam syndrome phenotype,
including the mutation site, pathogenicity predictions, and information on
population prevalence

Gene | nsSNP Genotype substitution | Protein Frequency in the Prediction of
in the mutation | population pathogenicity
protein (1000g/gnomAD/E | (FATHMM/PRO

XAC) VEAN/CADD)

FAT4 | rs1039808 | Heterozygotic | c.C2420T | p.A807V, | 0.424/0.461/0.422 | D/N/17.22

FAT4 | rs1567047 | Heterzygotic c.G10577A | p.G3526 | 0.231/0.225/0.267 | D/D/29.7

D
FAT4 [s12650153 | Homozygotic | ¢.G11624A | p.S3875N | 0.009/0.007/0.002 | T/N/20.1

Thus, in this chapter, we presented the results of nsSNP studies in the genes

CCBEL, ADAMTSS3, and FAT4, some of which have already been published by
other researchers, while others were newly identified by us or found in the full-

genome sequence data of a patient with the phenotype of Hennekam syndrome. We
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verified these mutations using various in silico tools to identify harmful nsSNPs
among them, confirmed the impact of selected potentially harmful mutations on the
structure and function of the investigated proteins, and then performed protein
modeling, analysis, and simulation of the molecular dynamics of wild-type and
mutant protein models to determine the effects that the identified amino acid
substitutions may have on the CCBE1, ADAMTSS3, and FAT4 proteins.
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CONCLUSION

With the advancement of technology and accumulation of new knowledge,
there is a constant improvement in the understanding of significant developmental
anomalies affecting the human population. However, much still remains unknown
and awaits discovery. Predicting any deviation in a living system that may lead to
disease/syndromes/death depends on multiple variables. Studying the genetic factors
opens up significant opportunities for diagnosis, prognosis, and personalized
treatment for physicians and biologists, but first, it is necessary to evaluate the
impact of each individual genomic variant on the structure and function of the
protein, as well as its influence on the phenotype as a whole.

The results presented in this work were achieved through the development and
integration of modern technologies for evaluating the impact of non-synonymous
single nucleotide polymorphisms (nsSNPs) on the encoded protein into the analysis
process. Along with other evaluation methods and the interpretation of large-scale
and complex multidimensional data in systems biology, this may become another
instrument for regular research on various human pathologies, including
immunopathology.

To understand the mechanisms of increased susceptibility of patients with
RBCKZ1 deficiency to infections, as well as their relationship with amylopectinosis
present in the disease phenotype, we conducted a bioinformatics study of a
previously described case of RBCK1 deficiency accompanied by autoinflammation
and an infectious syndrome, which distinguishes this disease from other
autoinflammatory syndromes in this group.

Genes with increased and decreased expression in autoinflammatory
syndrome RBCK1 deficiency (also known as HOIL1 deficiency), identified during
our research, allowed us to identify key signaling pathways involved in the

development of this disease (signaling pathways involved in Staphylococcus aureus,
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Vibrio cholerae infections, leishmaniasis, intracellular signal transduction, antigen
processing and presentation, NK-mediated cytotoxicity, and others).

These signaling pathways and corresponding proteins directly or indirectly
reflect the deep involvement of molecular processes related to the immune system
in the pathogenesis of the disease. In addition, a general understanding of the
immune mechanisms involved has been developed.

In particular, changes in the activity of mTOR, PISK/AKT, Rho, and Nf-kB
signaling pathways have been shown to affect the expression of immune system
genes, cell apoptosis, and sensitivity to the key cytokine of the immune response,
IL-1P.

Moreover, the gene CSID2 significantly affects cell susceptibility to ER
stress, apoptosis, and cell death. Its expression was significantly reduced in RBCK1-
deficient cells compared to mononuclear cells from the peripheral blood of healthy
children (p=0.000000000000000007537936).

We also found that the differences in the expression of genes related to viral
infections, including the signaling pathway involved in SARS-CoV-2 infection, are
insignificant. This is also confirmed by clinical observations described in
publications by other researchers, where particular susceptibility in patients is
identified specifically with respect to bacterial agents [129].

Overall, it can be concluded that increased susceptibility to pyogenic
infections is complicated by general protein ubiquitination disorders, extensive
glycophagy with glycogen depletion and accumulation of polysaccharides, as well
as identified differences in gene expression and, most likely, production of various
Immune response proteins.

In our study, the network density and the so-called biological distance for
genes related to primary immunodeficiencies (PIDs) and congenital neutropenia, in
particular, were found to be functionally similar to each other and closely interact
compared to other PID genes. Using these data, as well as identifying genes whose
expression differs significantly from normal in severe congenital neutropenia, and

combining this information with data on protein-protein interaction and gene
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function characterization data (“biological distance™ and "network density"), we
were able to predict causally significant genes for the development of congenital
neutropenia that were not previously described in the classification of primary
immunodeficiencies in this role.

In our study, we identified 15 novel candidate genes for the development of
congenital neutropenia that are interdependent with known genes involved in the
same biological pathways, demonstrating the high biological significance of their
correlation with known congenital neutropenia genes. The confirmation of several
predicted genes and their impact on neutrophil functions in recent studies on patients
with neutrophil defects convincingly demonstrate the significance of these candidate
genes for the development of pathology.

Additionally, in our investigation of congenital neutropenia, we analyzed the
pathogenicity of single nucleotide variants in the ELANE and TCIRGL1 genes. Using
several computational tools, we identified 8 non-synonymous single nucleotide
variants (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157,
rs201139487, rs137854451, and rs200384291) in the neutrophil elastase (ELANE)
gene that are most disruptive to the protein structure and function. Variants with
substitutions F218L, R34W, G203S, R193W, and T175M have not yet been detected
in patients with severe congenital neutropenia, while variants C71Y, P139R, C151Y,
G214R, and G203C, which we reported in our study, are already associated with
both disorders. These mutations destabilize the structure, disrupt the activation,
splicing, and folding of the ELANE protein and may decrease the efficiency of the
trypsin-like serine protease.

The TCIRG1 gene defect has recently been considered by various scientists
not only as a cause of hereditary osteopetrosis (aggressive osteoporosis and
increased risk of fractures), but also as a cause of congenital neutropenia. The results
of whole-genome sequencing of a patient with congenital neutropenia at our disposal
allowed us to suspect the TCIRG1 gene variant as the cause, especially since other

hereditary causes of congenital neutropenia had not been previously identified by
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specialists, and the patient receives specific treatment and is under observation by
an immunologist with this diagnosis.

To assess the pathogenicity of the identified non-synonymous single
nucleotide variant, molecular dynamics simulation of the TCIRG1 protein was
conducted with consideration of the given amino acid substitution (V52L). The tests
showed that the resulting modified protein is less stable, indicating a higher
probability of inadequate functioning in the patient.

To provide convincing evidence, it is necessary to conduct testing of the
identified protein in the patient and their parents, as well as exclude other potential
causes that may be discovered in the future. Nonetheless, the in silico investigation
method has allowed for the increased significance of such a substitution in the
protein and presents it as a substitution requiring special attention.

In addition to the TCIRG1 V52L mutation, we tested other single amino acid
changes in highly conservative regions of the TCIRGL1 protein, and a total of 15
NSSNPs (rs199902030, rs200149541, rs372499913, rs267605221, rs374941368,
rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251,
rs121908251, rs149792489, and rs116675104) were identified, which are likely
pathogenic gene variants since they destabilize the structure and function of the wild-
type protein. Some of these variants are located in the conserved domain of V-
ATPase |. These variants have not yet been identified in patients with congenital
neutropenia and/or osteopetrosis, while the G405R, R444L, and D517N variants that
were reported in our study have already been confirmed by other researchers as
variants associated with osteopetrosis [26, 34]. The results of the investigation may
help in further understanding the broad spectrum of diseases associated with the
activation of the TCIRG1 kinase catalytic domain and assist in developing effective
treatments for diseases associated with changes in this protein.

Similar methods were applied in assessing the impact of non-synonymous
single nucleotide substitutions on the structure and function of proteins responsible
for the development of Hennekam syndrome - FAT4 and ADAMTS3. In addition to

these two genes, this autosomal recessive disorder, in which lymphangiectasia and
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lymphedema play a key role in its pathogenesis, is also associated with defects in
the CCBEL1 gene. Three corresponding proteins affect the activation of the primary
lymphangiogenic growth factor VEGF-C.

Using modern in silico tools, this study investigated the most pathogenic non-
synonymous single nucleotide polymorphisms (nsSNPs) in the CCBE1, FAT4, and
ADAMTS3 genes. Our results demonstrate that seven nsSNPs in the CCBE1 gene
(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418,
rs121908251, and rs372499913) are likely to have a pathogenic impact, with four of
them (G330E, C102S, C174R, and G107D) having a very high probability of being
pathogenic, and two of them (G330E and G107D) never having been reported in the
context of Hennekam syndrome. In addition, two important substitutions in the
CCBEL gene (rs374941368 and rs200149541) were evaluated, which may have an
impact on post-translational modifications, as they affect a potential phosphorylation
site. The web-based ligand-binding analysis service FTSite was used to assess the
impact of these substitutions on molecule function, and the two substitutions were
found to be potentially highly deleterious and should be taken into account when
diagnosing Hennekam syndrome.

When analyzing variants of the ADAMTS3 gene from the dbSNP database,
919 nsSNPs were initially sorted, of which five substitutions (G298R, C567Y,
A370T, C567R, and G374S) were predicted to be the most dangerous and potentially
associated with disease. Protein modeling showed that the protein can be divided
into segments 1, 2, and 3, which are connected by short loops. Using molecular
dynamics simulation tools, it was found that some substitutions significantly
destabilize the protein structure and disrupt secondary structures, especially in
segment 2. The pathogenic effect of mutations in segment 1 may be related not to
destabilization, but to other factors, such as changes in phosphorylation, as
suggested by post-translational modification studies.

Our work represents the first study of ADAMTS3 gene polymorphisms using
multiple tools, including molecular dynamics simulation. Some of the predicted

substitutions in the ADAMSTS3 protein are not yet reported in the PubMed library,
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and we hope that the obtained data will be useful for diagnostic tasks and the search
for therapy methods.

In analyzing various variants of the FAT4 gene among 3,343 nsSNPs
available in the NCBI library using different tools to predict pathogenicity, 11
substitutions in the FAT4 protein (D2978G, V986D, Y1912C, R4799C, D1022G,
G4786R, D2439E, E2426Q, R4643C, N1309l, and Y2909H) were predicted as
potentially pathogenic. In addition, three substitutions in the FAT4 gene
(rs12650153, rs1567047, and rs1039808) were previously detected in a patient with
the presumed Henneman syndrome by filtering candidate variants during whole-
genome sequencing, and in silico study of these mutations showed that they strongly
destabilize the protein structure and function.

In this study, using the molecular dynamics simulation method (MDS), we
focused on 19 mutations in the FAT4 gene - 11 predicted in our in silico study, 3
nsSNPs detected in the patient, and 5 nsSNPs already published as likely causes of
Henneman and Van Maldergem syndromes, which differ phenotypically from
Henneman syndrome.

The results of the applied molecular dynamics simulation method confirmed
lower stability of the "mutant” protein compared to the "wild" type. Genetic variants
detected in this cohort of studies were not previously registered as causes of
Henneman syndrome. It is worth noting that due to the limited resources of the
supercomputer and software, such a long protein as FAT4, consisting of 4981 amino
acids, could only be simulated fragmentarily, in segments containing the analyzed
substitution of less than 1000 amino acids. Nevertheless, we hope that these results
can contribute to a better understanding of the predisposition to diseases associated
with the activation of the FAT4 protein and may help in the development of effective
approaches for the diagnosis and treatment of diseases related to this gene.

In general, it should be noted that the FAT4 molecule has a huge size and is
itself a flexible structure, providing the transmission of not fully understood
intercellular signals. Perhaps this molecule provides spatial orientation, cell

polarization, and signal transmission about intercellular contact, among other things.
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Due to its length, it is difficult to predict how much of a serious impact a single
amino acid substitution has. Accumulation of differences and especially impairment
of functional active binding centers of molecules should be more significant than a

single amino acid substitution.

Prospects for further development of the topic

Identification of specific genetic changes and determination of the molecular
basis of immunopathology will enable the study of pathogenetic mechanisms,
differentiation of nosological forms from a vast heterogeneous group of inborn
errors of immunity, and approach the creation of specific targeted therapies,
including gene editing and antisense oligonucleotides. This will make it possible to
address issues of radical patient cure. In addition, even a simple acceleration of the
diagnostic process will help timely diagnosis, prescribe replacement and
pathogenetic therapy, improve the prognosis, and quality of life of patients.

The process of verifying genes of primary immunodeficiency can be improved
by developing software to predict candidate genes of various immunopathologies,
and incorporating methods for predicting the impact of genetic changes on protein
in silico provides the possibility of its effective use in clinical research.

In addition, studying rare cases of human pathology allows us to address
general pathological issues of disease formation, enriching science with knowledge
of the functioning laws of the immune system and the human body as a whole. By
delving into the molecular level of pathology, researchers gain objective
justifications for the development and application of targeted therapeutic tactics,
which opens up the prospect of creating new targeted drugs.

Thus, our research has allowed us to draw the following conclusions.
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FINDINGS

1. New genetic findings have been identified in three types of primary
immunodeficiency disorders: RBCK1 deficiency, congenital neutropenia, and
Hennekam syndrome.

2. Significant differences in gene expression have been found in RBCK1
deficiency compared to healthy children and patients with CINCA/NOMID
syndrome, Muckle-Wells syndrome, and mevalonate kinase deficiency.

3. Non-synonymous single nucleotide substitutions in the TCIRG1 gene
(rs199902030, rs200149541, rs372499913, rs267605221, rs374941368,
rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251,
rs121908251, rs149792489, rs116675104) and ELANE gene (rs200384291,
rs201163886, rs193141883, rs201139487, rs201723157) destabilize the TCIRG1
and ELANE proteins in neutrophils.

4, The genes CDC42, CRKL, FGR, CRC, NYK, PLCG1, ARRB2,
PIK3CG, PTK2, STATL1, STAT2, STAT3, STAT5B, VAV], and ITK are new
candidate genes for the development of congenital neutropenia.

5. Non-synonymous single nucleotide substitutions in the CCBEL1l
(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418,
rs121908251, and rs372499913), FAT4 (rs147663284, rs192514171, rs138137489,
rs199895179, rs372060616, rs138173652, rs142184187, rs147633644,
rs181607904, rs184971791, rs148655455), and ADAMTS3 (rs61757480,
rs61741624, rs140806973, rs140595148, rs140914273, rs142268705, rs142781084,
rs143059623, rs146979323, rs372067284, rs370857003, rs375983592,
rs367831484, rs202031187, and rs150012152) genes lead to destabilization of the
CCBEL, FAT4, and ADAMTS3 proteins and may cause Hennekam syndrome.

6.  The developed program for sequential use of bioinformatics methods is
effective in identifying genes that influence the pathogenesis of diseases associated

with primary immunodeficiency disorders.
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PRACTICAL RECOMMENDATIONS

1. In diagnosing primary immunodeficiencies (inborn errors of
Immunity), it is necessary to determine the gene expression profile by analyzing
differential gene expression, signaling pathways, and genetic ontologies, as well as
identifying biomarkers of pathology, which will reduce the costs of treatment and
prevent the development of side effects.

2. When conducting research on predicting new candidate genes for
congenital neutropenia, it is necessary to include co-expression factors, protein-
protein interactions, and signaling pathways in the analysis.

3. For the differential diagnosis of congenital neutropenia, in addition to
the genes listed on the ESID website and in the 1UIS classification, additional genes
(CDC42, CRKL, FGR, CRC, NYK, PLCG1, ARRB2, PIK3CG, PTK2, STAT]1,
STAT2, STAT3, STAT5B, VAV], and ITK), identified in our study as candidate
genes, should be included.

4, For the differential diagnosis of Henneman syndrome and congenital
neutropenia, in addition to the listed missense mutations in the genes ADAMTS3,
FAT4, CCBE1, ELANE, and TCIRG], it is necessary to assess the presence of
nsSNP missense mutations identified in our study for the following genes: CCBE1
(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418,
rs121908251, and rs372499913), ELANE (rs200384291, rs201163886,
rs193141883, rs201139487, and rs201723157), TCIRG1 (rs199902030,
rs200149541, rs372499913, rs267605221, rs374941368, rs375717418, rs80008675,
rs149792489, rs116675104, rs121908250, rs121908251, rs121908251,
rs149792489, and rs116675104), FAT4 (rs147663284, rs192514171, rs138137489,
rs199895179, rs372060616, rs138173652, rs142184187, rs147633644,
rs181607904, rs184971791, rs148655455), and ADAMTS3 (rs61757480,
rs61741624, rs140806973, rs140595148, rs140914273, rs142268705, rs142781084,
rs143059623, rs146979323, rs372067284, rs370857003, rs375983592,
rs367831484, rs202031187, and rs150012152).
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