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INTRODUCTION 

 

Relevance of the research topic. The immune system is a complex biological 

system designed to combat foreign antigens, recognize foreign external and internal 

antigens, destroy infected and abnormally developing cells, as well as to control 

tolerance to autoantigens and commensal microbiota, thereby fulfilling the 

important biological task of species preservation. 

As a result, innate immune deficiencies (IID) or primary immunodeficiencies 

(PID) can lead to increased susceptibility to infections, autoimmune processes, 

autoinflammatory diseases, malignancies, or allergies. The cause of this may 

primarily be genetic changes, both at the level of the genome and of individual genes 

that encode protein molecules involved in immune mechanisms. 

Although until recently PIDs were considered rare diseases and individual 

genetic disorders may not occur frequently, in aggregate they can affect a significant 

number of people. Moreover, due to improved diagnosis and the development of 

next-generation sequencing (NGS) technologies, the reported prevalence of primary 

immunodeficiencies (PIDs) has increased to approximately 40 per 100,000 

population in recent years [89, 164]. 

In order to develop new methods for the diagnosis and therapy of 

immunopathology, a deep understanding of the functioning of the immune system 

at all levels of the organism is necessary. The emergence of high-throughput 

biological methods has allowed for an unprecedented understanding of the 

molecular mechanisms underlying the dynamics of the immune system and its 

interplay with other systems in the body. However, the tremendous complexity of 

all the parameters, spanning several orders of spatial and temporal scales, can only 

be grasped through the use of systems computational immunology - in particular, 

through the use of computational approaches for processing and modeling large 

immunological data. 

Our work focuses on three diseases: congenital neutropenia (one of the most 

common forms of PID), Hennekam syndrome (one of the rarest), and RBCK1 
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deficiency, which is classified as an autoinflammatory PID but also has an increased 

susceptibility to pyogenic infections. RBCK1 deficiency was first described in 2012 

[200], Hennekam syndrome in 1989 [25], and the first genetic discoveries of 

congenital neutropenia date back to 1999 [137,140]. However, diagnosing each of 

these syndromes remains a challenge, as new gene variants continue to be identified 

that lead to the phenotypes of these diseases, and the precise mechanisms of 

Hennekam syndrome and RBCK1 deficiency are still the subject of debate. 

Furthermore, it is important not only to identify gene variants but also to 

demonstrate their influence on the final product - the protein, whose destabilization 

can be assessed by in silico tools. This will accelerate the assessment of the 

pathogenicity of the gene variant and enable the inclusion of identified variants in 

the list of causative factors to speed up diagnosis, and to approach methods of 

pathogenetic or gene therapy, which are the ultimate goals of studying congenital 

human pathology. 

Thus, the importance of identifying causative gene variants in 

immunopathology, as well as searching for the mechanisms of pathology that lead 

to the phenotype of selected syndromes, have motivated the research goal. 

Purpose of the study: To determine the role of potential pathogenic variants 

of causative genes in the pathogenesis of congenital immune disorders - RBCK1 

deficiency, congenital neutropenia, and Hennekam syndrome - using bioinformatics 

analysis methods. 

Research objectives:  

1. We will conduct a comparative analysis of gene expression in RBCK1 

deficiency relative to healthy children and patients with CINCA/NOMID 

syndromes, Macleod-Wells syndrome, and mevalonate kinase deficiency. 

2. We will assess the pathogenicity of nonsynonymous single nucleotide 

variants in the ELANE and TCIRG1 genes in congenital neutropenia. 

3. We will identify potential new candidate genes involved in the 

development of diseases belonging to the group of congenital neutropenias. 
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4. We will identify new variants of the CCBE1, ADAMTS3, and FAT4 

genes that lead to the development of Hennekam syndrome. 

Methodology and research methods:  The work was carried out at the 

Department of Immunochemistry of the Chemical Technology Institute of UrFU, as 

well as at the Institute of Immunology and Physiology of the Ural Branch of the 

Russian Academy of Sciences (Ekaterinburg, Russia), in accordance with the 

program of fundamental scientific research "Immunological mechanisms of human 

ontogenesis and their role in the formation of pathological conditions" (state 

registration number - 01201352044). 

Various data sources and research methods were used to solve the tasks set. 

To investigate the pathogenesis of RBCK1 deficiency, a comparative gene 

expression analysis was conducted, for which 2 datasets were downloaded from the 

NCBI Gene Expression Omnibus (GEO): 1) GSE31064, which included data 

obtained from skin fibroblasts of patients - 2 with RBCK1 deficiency, 1 with 

MYD88 deficiency, 1 with NEMO syndrome, and 3 healthy individuals (control); 

2) GSE40561, which included data obtained from whole blood collected from 2 

patients with CINCA/NOMID disease, 5 patients with Muckle-Wells syndrome, 2 

patients with hyper Ig-D syndrome, 1 patient with RBCK1 deficiency, and 41 

healthy children (control). 

Differentially expressed genes in the disease may play a key role in the studied 

disease or condition and may be potential candidate genes for further research. To 

this end, a gene expression analysis of two datasets was conducted to search for 

candidate genes for congenital neutropenia, downloaded from NCBI GEO 

(https://www.ncbi.nlm.nih.gov). Dataset GSE142347 included 93 female patients, 

193 control patients, and 95 affected males, while dataset GSE6322 included 2 

parents and 2 children with neutropenia. 

Data on various genes and single nucleotide polymorphisms (SNPs) in 

congenital neutropenia and Hennkam syndrome were downloaded from dbSNP-

NCBI (https://www.ncbi.nlm.nih.gov/snp/) and Ensembl 

(https://www.ensembl.org/index.html). The following SNPs were downloaded for 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ensembl.org/index.html
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the study of SNPs in congenital neutropenia genes: for the ELANE gene, 3646 SNPs, 

of which 301 were nonsynonymous SNPs (nsSNPs); for the TCGIR1 gene, a total 

of 5627 SNPs, of which 811 were nsSNPs. For the study of SNPs in Hennkam 

syndrome genes: CCBE1 - 73845 SNPs and 407 nsSNPs; FAT4 - 68257 SNPs and 

3434 nsSNPs; ADAMTS3: 70876 SNPs and 911 nsSNPs. 

The investigation of gene variants in patients with congenital neutropenia and 

Hennekam syndrome from the Sverdlovsk region was made possible thanks to 

sequencing results (performed at the Genome Center Genomed) voluntarily 

provided by patients for research purposes at the Institute of Immunology and 

Physiology of the Ural Branch of the Russian Academy of Sciences, and further 

anonymized. 

To assess the harmfulness of nonsynonymous single nucleotide variants on 

protein structure and function, the following sequence of actions was used. Firstly, 

all identified nsSNPs in databases were evaluated using the SIFT tool. Then, the 

sorted probably deleterious mutations were processed through the PolyPhen-2 

program, and subsequently sent for evaluation by other bioinformatics tools, 

including both software and online services, totaling up to 18 - PROVEAN, 

FATHMM, LRT, M-CAP, META SVM, METALR, Mutation Assessor, Mutation 

Taster, FATHMM MKLCoding, CAAD, PHD-SNP, Panter, SNP&GO, PON-P2, 

DANN, SNAP2 - all of which were accessible through VarCard [212] and MutPred 

[99]. 

The final result of the filtration, in which the prediction of harmfulness 

coincided in all tools, was considered as potentially harmful substitutions, and only 

they were evaluated for their impact on the secondary and tertiary structure of the 

protein, also assessed through molecular dynamics simulations. 

To evaluate the impact of single nucleotide substitutions on the structure and 

stability of proteins, bioinformatics analysis programs I-Mutant and MU-PRO were 

used. 

For the evaluation of protein-protein interactions, the software packages 

STRING and Cytoscape were used. 
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The KEGG database was used for functional enrichment analysis. 

The program CemiTool was used for gene co-expression analysis. 

In order to build 3D models of the wild-type and mutant protein structures and 

evaluate the impact of mutations on protein function, the following programs were 

used: HHPred, Alpha fold 2, Phyre2, I-Taser, Chimera UCSF Chimera, and PyMOL. 

Molecular dynamics simulations were performed using the Maestro and 

Gromacs 4.5.3 packages from Schrödinger LLC. Analysis of whole-genome 

sequencing data and identification of single-nucleotide polymorphisms (SNPs) was 

performed on a supercomputer provided by the Shared-Access Equipment Center of 

the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy 

of Sciences (IMM UB RAS - SC Center) in Ekaterinburg. Informed consent was 

obtained from the parents of the patients for the use of de-identified research results. 

Statistical analysis, bioinformatics tools, and mathematical models were performed 

using Python version 3.7.1 (https://www.python.org/) and R version 3.4.3 

(https://www.r-project.org/) on the Linux operating system. 

Degree of reliability.  The reliability of the research results was ensured by 

the careful application of established research methods and procedures, the use of 

appropriate data collection tools, and thorough analysis of the collected data. The 

study design was based on an extensive review of relevant literature, and hypotheses 

were tested using various statistical and bioinformatics analyses. The applicant's 

personal contribution consisted of direct participation in all stages of the dissertation 

research, including the creation of the main idea, planning of scientific work, 

formulation of working hypotheses, objectives, tasks, determination of the 

methodology of the dissertation research, interpretation, and analysis of the results 

obtained, which were conducted by the applicant with scientific supervisors - I.A. 

Tuzankina, Doctor of Medical Sciences, Professor, Honored Scientist of Russia, and 

V.A. Cheresnev, Academician of the Russian Academy of Sciences, Doctor of 

Medical Sciences, Professor. A large and diverse population sample was used for 

the study, collected from online databases, and the data were analyzed using 

bioinformatics and computational biology methods. The author, together with a 

https://www.python.org/
https://www.r-project.org/
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biotechnologist (an associated professor and a candidate of biological sciences, Dr. 

Hafiz Musamil Rahman) and a candidate of sciences and senior researcher at the 

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy 

of Sciences, Dr. Mikhail Bolkov, conducted bioinformatics analysis, which included 

analysis of differential gene expression, pathway analysis, gene ontology analysis, 

protein-protein interactions, in silico nsSNP analysis, protein modeling, and 

molecular dynamic simulation. 

The provisions for defense:  

1. A deficit of RBCK1 is associated with reduced expression of genes 

involved in immune response signaling pathways, inflammatory response, and 

protein phosphorylation. 

2. Congenital neutropenia is associated with a list of genes that expands the 

spectrum of known genes associated with primary immunodeficiencies. 

3. Newly identified non-synonymous single nucleotide variants in the 

TCIRG1 and ELANE genes have a destabilizing effect on the TCIRG1 and ELANE 

proteins, respectively. 

4. Newly identified non-synonymous single nucleotide variants in genes 

associated with Hennekam syndrome result in destabilization of the structure and 

function of CCBE1, ADAMTS3, and FAT4 proteins. 

The scientific novelty of research  

1. The scientific novelty of the research lies in several key aspects. Firstly, 

the study identified differences in gene expression in peripheral blood mononuclear 

cells in individuals with RBCK1 deficiency compared to healthy individuals. This 

finding sheds new light on the underlying mechanisms of RBCK1 deficiency and 

may contribute to the development of new diagnostic and treatment approaches. 

2. Secondly, the study identified new pathogenic variants in the TCIRG1 and 

ELANE genes, which were analyzed for their impact on the corresponding proteins 

for the first time. This information is important for understanding the molecular basis 

of diseases associated with these genes and could lead to new therapeutic strategies. 
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3. Thirdly, the study identified new candidate genes for congenital 

neutropenia, which may be useful in the diagnosis and treatment of this disease in 

the future. 

4. Finally, the study identified new non-synonymous single nucleotide 

polymorphisms (nsSNPs) in the causative genes of Hennekam syndrome (CCBE1, 

FAT4, and ADAMTS3) that have a significant impact on the structure and function 

of these proteins. This information adds to our understanding of the molecular basis 

of this syndrome and could contribute to the development of new therapeutic 

approaches. 

Theoretical and practical significance of the research 

The theoretical significance of the study lies in obtaining new data on genetic-

phenotypic relationships, which form the pathogenetic basis of diseases associated 

with inborn errors of immunity, namely RBCK1 deficiency, congenital neutropenia, 

and Henneman syndrome, through the development of a program for the sequential 

use of bioinformatic analysis methods, including molecular dynamics simulations. 

This will allow the use of the obtained information in further research aimed at 

identifying therapeutic targets for these diseases. 

The practical significance of the study lies in the emerging possibility of using 

predicted gene variants in the differential diagnostic process when identifying 

primary immunodeficiency syndromes, such as RBCK1 deficiency, congenital 

neutropenia, and Henneman syndrome. The developed program for sequential use 

of bioinformatic analysis methods can be used in the search for new candidate genes 

associated with inborn errors of immunity. 

Implementation of research results in practice  

The results of this work have been implemented in the educational process of 

the graduate program at the Institute of Immunology and Physiology of the Ural 

Branch of the Russian Academy of Sciences, as well as in the Department of 

Immunohemistry at the Chemical-Technological Institute of the Ural Federal 

University named after the first President of Russia, Boris Yeltsin. Additionally, the 

findings have been incorporated into the scientific research practices of the 
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Inflammation Immunology Laboratory at the Institute of Immunology and 

Physiology of the Ural Branch of the Russian Academy of Sciences. Furthermore, 

the obtained results have been applied in the work of the State Budgetary Healthcare 

Institution "Maternal and Child Healthcare Clinical Diagnostic Center". 

Publications. Regarding publications, the applicant has published 13 works 

based on the dissertation results, including 5 publications in journals recommended 

by the Higher Attestation Commission (VAK) with a K1 category rating and indexed 

in international electronic databases Web of Science Q1-2, Web of Science (Q2-

Q4), and Scopus with a total of 6 publications.  

Volume and structure of the thesis. The dissertation is composed of 209 

pages of typewritten text, and includes an introduction, literature review, materials 

and methods, three chapters with the results of original research, conclusions, 

practical recommendations, a list of abbreviations, and a list of references (228 

sources, including 12 domestic and 216 foreign). The work is illustrated with 20 

tables, 79 figures, and 2 formulas. The language used in the dissertation is both 

grammatically and scientifically sound. 

Acknowledgments. I am sincerely grateful to Mikhail Artemovich Bolkov, 

senior research fellow at the Laboratory of Inflammation Immunology at the 

Institute of Immunology and Physiology of the Ural Branch of the Russian Academy 

of Sciences, for his insightful comments and illuminating discussions. 

I am grateful to Professor Yevgeny Yuryevich Gusev, head of the Laboratory 

of Inflammation Immunology at the Institute of Immunology and Physiology of the 

Ural Branch of the Russian Academy of Sciences, for his systematic approach to the 

issues raised in our work, as well as for his important observations on the general 

molecular mechanisms and signaling pathways investigated in our research. 

I am grateful to Boris Hermanovich Yushkov, Doctor of Medical Sciences, 

professor at the Institute of Immunology and Physiology of the Ural Branch of the 

Russian Academy of Sciences, and corresponding member of the Russian Academy 

of Sciences, as well as to Alexei Petrovich Sarapulcev, Doctor of Medical Sciences, 
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for their precise comments, which allowed us to adjust our work in the necessary 

direction. 
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CHAPTER 1 - REVIEW OF THE LITERATURE 

 

 

Primary immunodeficiencies (PIDs), which arise from congenital errors of the 

immune system, are classified into more than 485 monogenic syndromes and can 

affect up to 1% of the population [4, 89]. Without proper detection and treatment, 

individuals with PIDs are susceptible to serious, long-lasting, and often life-

threatening infections, autoimmune and autoinflammatory processes, reparative 

disorders, and tumors. Despite the achieved successes, awareness of PIDs remains a 

critical issue for both the medical community and the general population, as it should 

lead to improved diagnosis and timely application of modern and effective 

therapeutic methods, which will not only improve the quality of life but also save it 

for those suffering from these diseases. Meanwhile, patients with various 

manifestations of the disease do not always have a chance of recovery due to the 

delayed identification of the underlying cause - the presence of primary 

immunodeficiencies, which can be observed, for example, in patients with 

oncological pathology, despite the well-known fact of an increased risk of malignant 

tumors in PIDs compared to the population without PIDs. The same can be observed 

in autoimmune or autoinflammatory pathology, which may be the only 

manifestation of PIDs [149]. 

1.1 - PID classification, Prevalence, Diagnosis, treatment and prevention 

of PID 

The symptoms of primary immunodeficiencies can include infectious 

diseases, which may be caused by inherited immune system errors [115], often 

characterized by many other deviations, including increased susceptibility to 

malignant tumors, lymphoproliferative, autoimmune diseases, and 

autoinflammatory disorders [4, 89]. Since 2017, all primary immunodeficiencies 

have been classified as inherited immune system errors, but the term "primary 

immunodeficiency" still appears in the International Classification of Diseases, 11th 

revision [21]. Access to research related to primary immunodeficiencies is difficult 
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due to the rarity of disorders and the lack of known causal genetic defects [103]. 

Phenotypic manifestations of diseases, like other consequences of genetic pathology, 

can appear at any age, but more severe forms of the disease are more commonly 

encountered in infancy or early childhood. Since PID often manifests as infections 

with various symptoms and clinical manifestations, in practical healthcare, 

infections are often treated while overlooking the underlying cause [9]. This often 

leads to recurrent infections, early chronicity, development of severe complications 

and disease progression, disability, irreversible organ damage, or even death. For 

example, in the United States in the 2010s, the average time from the onset of 

symptoms to the diagnosis of PID was 12.4 years [228]. This means that many 

people with primary immunodeficiency (PID) face recurrent infections with 

negative consequences that can affect their personal, social, and professional life for 

over a decade. However, after recognition of inherited immune system defects and 

treatment of PID, patients can lead a normal, productive life provided that they 

receive pathogenetically justified therapy or radical curative measures [2, 10, 51]. 

To address this critical problem, the Jeffrey Modell Foundation (JMF) has 

established a global network of specialized centers and developed 10 warning signs 

of PID [74]. The full original document can also be found on the official JMF 

website. However, at present, an improved version of 12 warning signs is used in 

Russia, which places special attention on non-infectious manifestations. They are 

more diverse, and in many syndromes, infectious manifestations are absent or 

secondary. 

In November 2021, the National Association of Experts on Primary 

Immunodeficiencies (NAEPID), together with the charitable foundation 

"Podsolnukh," which provides assistance to children and adults with immune 

disorders, updated the list of warning signs for primary immunodeficiencies for use 

by healthcare specialists of various profiles. This list focuses on the signs of primary 

immunodeficiencies that manifest primarily in the first year of life and often lead to 

fatal outcomes in early childhood (Figure 1). 

Warning signs of primary immunodeficiencies: 
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1. Family history - the presence of PID cases in relatives. 

2. Frequent bacterial infections. 

3. Severe course of bacterial infections requiring the use of intravenous 

antibiotics. 

4. Infections caused by opportunistic pathogens. 

5. Severe atypical skin manifestations, edema. 

6. Inflammatory bowel disease with early onset and/or severe course. 

7. Decreased values in complete blood count. 

8. Prolonged enlargement of lymph nodes, liver, spleen. 

9. Significant reduction in the size of the thymus, lymph nodes, and tonsils. 

10. Recurrent fevers without foci of infection. 

11. Combination of multiple autoimmune disorders, including 

endocrinopathies. 

12. Facial features (congenital malformations and minor developmental 

anomalies). 
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Figure 1 - Warning signs of primary immunodeficiencies 
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C. Picard et al. (2015) determined the prevalence of primary 

immunodeficiency disorders (PID) as 1 case per 1200, with a range of 1:600 for IgA 

deficiency and 1:20,000 for all immunodeficiencies, 1:50,000 for T-cell 

immunodeficiency, and 1:100,000 for X-linked agammaglobulinemia [227]. Recent 

data suggest that inborn errors of immunity occur in 1% of the population [79]. 

Immunodeficiency disorders are considered more significant for healthcare 

planning in countries where deaths from common infections have been almost 

completely eliminated, and children with PID survive long enough to be identified. 

Therefore, Pilania et al. (2019) claim that PIDs are most often detected in countries 

where infant mortality does not exceed 15/1000 births [57]. Epidemiological 

observations of PIDs in Asian countries such as Japan and Korea date back to the 

1950s. The first survey and registration program for PID patients in Japan was 

created in 1974 with the establishment of the Immunodeficiency Registration Center 

in the Pediatrics Department of the University of Tokyo [84]. 497 patients were 

registered in Japan from 1966 to 1975. Among them, the most commonly diagnosed 

PIDs were IgA deficiency, X-linked agammaglobulinemia (XLA), and ataxia-

telangiectasia. The Ministry of Health, Labor and Welfare of Japan established a 

research program that created a clinical research group to conduct epidemiological, 

pathological, diagnostic, and therapeutic research on PIDs, and by 2008, the Primary 

Immunodeficiency Diseases Network (PIDJ) database network was created to 

expand research opportunities and patient service. In 2011, 1240 PID patients were 

registered, and the prevalence of the disease was 2.3 per 100,000 population [142]. 

Although this prevalence was higher than in earlier reports in Japan, it was much 

lower than in Western countries and the Middle East. Several reasons for this 

discrepancy have been postulated. 

In Japan, several factors may contribute to the lower prevalence of primary 

immunodeficiency disorders (PIDs) compared to Western countries, including low 

levels of consanguinity in the region, sampling bias (asymptomatic selective IgA 

deficiency, transient hypogammaglobulinemia of infancy, and some other PIDs were 

not included in this study), and lower detection rates of PIDs in adults [142]. 
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Currently, there are facilities for the diagnosis and treatment of PIDs in 66 hospitals 

throughout Japan [209]. 

The earliest reports of PIDs from China were published in the 1960s. Interest 

in PIDs in China became more apparent in the 1980s [116]. In 1981, a section of 

pediatric immunology was established at the Chinese Pediatric Society of the 

Chinese Medical Association, and in 1998, a joint network and patient registry for 

PIDs was established. The largest cohort of PID patients was registered at the 

Children's Hospital of Chongqing Medical University, where a diagnosis was made 

for 352 patients between 2005 and 2011, with genetic analysis performed in 203 

patients [219]. Large cohorts of PID patients have also been identified at other 

medical centers in China, including the Children's Hospital of Fudan University in 

Jiaotong, the Beijing Children's Hospital, and the Guangzhou Children's Hospital. 

In the region of Taiwan, the Primary Immunodeficiency Care and Research 

Institute (PICAR) at Chang Gung Memorial Hospital in Taoyuan serves a population 

of approximately 23 million people and has diagnostic and treatment facilities for 

various primary immunodeficiency disorders (PIDs) [57]. Another similar center is 

located in Taipei. The incidence of PIDs in Taiwan was 2.17 per 100,000 live births, 

and Taiwan was the first region in Southeast Asia where a nationwide newborn 

screening for PIDs was conducted in 2012. 

The University of Hong Kong established a specialized service for children 

with PIDs in 1988, and in 1995, conditions for molecular diagnosis of PIDs were 

first established. Currently, the University of Hong Kong conducts genetic diagnosis 

for several PIDs using whole genome sequencing. 

Due to the high degree of consanguinity in the Middle East, a large number of 

PID cases have been reported in Turkey and Iran [15, 28]. Autosomal recessive 

disorders are more common in these countries. The first department of pediatric 

immunology was established in the children's hospital of Hacettepe University in 

1972. In 1974, the Turkish Society of Immunology was founded. There are also 

opportunities for hematopoietic stem cell transplantation (HSCT), and to date, about 

80 patients with SCID have received HSCT in Turkey. Recently, two Jeffrey Modell 
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Foundation (JMF) Centers for Immunodeficiencies have been established in Turkey: 

the Department of Pediatric Allergy and Immunology at Marmara University in 

Istanbul and the JMF Center at Hacettepe University [208]. 

The first center of clinical immunology and allergy in Iran was established by 

Professor Abolhassan Farhoudi at the Children's Medical Center of Tehran 

University of Medical Sciences in 1977 [6]. In 1999, a database for registering 

Iranian patients with primary immunodeficiency disorders (PIDD) was created - the 

Iranian Registry of Primary Immunodeficiencies (IPIDR), which is located at the 

Children's Medical Center and covers major hospitals throughout Iran. By 2018, it 

had registered 3,056 patients (with 1,395 new cases) [2]. The Iranian Primary 

Immunodeficiency Association (IPIA) was founded in 1998 with the goal of 

improving the diagnosis, management, and treatment systems, as well as promoting 

research and education in the field of PIDD. Several centers also have the ability to 

perform hematopoietic stem cell transplantation for PIDD patients. 

Significant progress has been made in understanding the pathogenesis, 

diagnosis, and treatment of these diseases over the past three decades. However, in 

many developing countries, these diseases still remain insufficiently recognized. 

This is mainly due to the lack of awareness among doctors, as well as the absence 

of diagnostic equipment in resource-limited countries. 

The earliest reports of primary immunodeficiency (PID) cases in India date 

back to the late 1960s. Initially, cases of patients with Wiskott-Aldrich syndrome 

(WAS), agammaglobulinemia, and ataxia-telangiectasia were reported [128, 131, 

214]. In 2012, Gupta et al. published a study comparing the clinical profile of PID 

patients in two large pediatric centers in India, the Advanced Pediatrics Centre at the 

Postgraduate Institute of Medical Education and Research (PGIMER) in Chandigarh 

and the National Institute of Immuno-hematology (NIIH) and B.J. Wadia Children's 

Hospital in Mumbai [165]. The profile of PID patients differed between these two 

centers. Antibody deficiency was the most common PID in Chandigarh, while 

familial hemophagocytic lymphohistiocytosis (HLH) was the most common PID 

diagnosed in Mumbai. Other common PIDs diagnosed in Chandigarh were WAS, 
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hyper-IgE syndrome, ataxia-telangiectasia, and hereditary angioedema. More cases 

of neutropenia, leukocyte adhesion deficiency (LAD), IFNγ-IL12 pathway 

disorders, and autoimmune lymphoproliferative syndrome were registered in 

Mumbai [165]. With increasing awareness, more cases of PID are being diagnosed 

throughout the country. 

In other Southeast Asian countries, including Singapore, centers for diagnosis 

and management of PID patients are also developing. In Singapore, 39 patients were 

registered in 2003, and data were collected from three major centers, including the 

Children's Medical Institute, National University Hospital, Tan Tock Seng Hospital, 

and Women's and Children's Hospital [168]. Antibody deficiency was the most 

common PID, followed by phagocytic defects. Since then, there has been a 

significant increase in the number of diagnosed PIDs in Singapore, and many centers 

in Singapore have the capabilities to perform genetic testing. 

Malaysia and Thailand are also catching up in terms of awareness and 

diagnostic base for PID. The national PID initiative was initiated in 2007 with the 

aim of improving the diagnostic base in various centers in Malaysia, which led to an 

improvement in the treatment and outcomes of PID patients [43]. The Malaysian 

Primary Immunodeficiency Network (MyPIN) was established in 2009 with the aim 

of improving the diagnostic and therapeutic base for PID. More than 300 PID 

patients are registered here [127]. A study published in Thailand reports on 72 

patients with various PID from the Ramathibodi Pediatric 

Allergy/Immunology/Rheumatology Clinic from 1991-2011 [167]. Intravenous 

immunoglobulin (IVIG) therapy is also available to most PID patients at a subsidized 

rate in Malaysia and Thailand [43]. The structure of PID diseases in Asia varies in 

different Asian countries. Due to the high level of consanguinity in the Middle 

Eastern countries, autosomal recessive (AR) diseases are relatively more common 

[15]. In some other Asian countries, X-linked forms of the disease are more 

common. Studies conducted in Japan and China claim that X-linked forms of SCID 

and chronic granulomatous disease (CGD) are more common than autosomal 



20 
 

recessive forms [197, 219]. As a result of consanguineous marriages, autosomal 

recessive diseases are also very common in some Southeast Asian countries, such as 

India, Pakistan, and Bangladesh [169]. Genotype can determine the clinical profile 

of inherited diseases, it can be altered by many environmental factors and determine 

the final phenotype [115]. Environmental factors affect the gut microbiota, 

significant factors may include socio-economic standards and the spectrum of 

available medical institutions. 

In addition to the differences in the PID spectrum observed in Asia compared 

to the rest of the world, PID patients in Asia also have a unique and distinct pattern 

of infections that can contribute to morbidity and mortality in these patients. Among 

these infections, Mycobacterium tuberculosis, Mycobacterium bovis, Burkholderia 

pseudomallei, and Talaromyces marneffei are prevalent [57]. It has been established 

that patients with chronic granulomatous disease (CGD) in Asia have a remarkably 

high prevalence of tuberculosis infection compared to CGD patients from other 

countries [94]. Due to the higher endemicity of tuberculosis in many Asian countries, 

Bacillus Calmette Guerin vaccine is administered at birth. Therefore, disseminated 

BCG infection is a major clinical manifestation of many PIDs in many Asian 

countries, such as severe combined immunodeficiency (SCID), CGD, hyper-IgM 

syndrome, and IL12-IFN-γ-mediated defects [57]. 

It has also been reported a high frequency of arthritis in XLA patients from 

Asian countries [216]. This is likely due to delayed diagnosis and subsequent delay 

in the initiation of immunoglobulin replacement therapy in these patients. 

Chromobacterium violaceum has been registered as an opportunistic infection in 

phagocytic defects (e.g., CGD) in many Asian countries. Initially, it was reported in 

patients from Malaysia, then it was reported in Vietnam, Thailand, Sri Lanka, India, 

as well as in Hong Kong and Taiwan in China [144]. Mortality rates of up to 50% 

have been reported in infections with this microorganism [224]. Similarly, 

melioidosis caused by Burkholderia pseudomallei is also endemic in many countries 

and is a major problem among patients with PID in Asia [98]. 
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In recent times, several primary immunodeficiencies (PIDs) have been 

identified in association with a predisposition to endemic mycoses (such as 

Talaromyces marneffei, disseminated coccidioidomycosis, histoplasmosis, and 

paracoccidioidomycosis) in this region. These fungal infections are usually linked 

to defects in the IL-12/IFN-γ-mediated pathway, enhanced STAT1 function, and 

other diseases mediated by Th17 lymphocytes [113, 155]. 

The oral live polio vaccine is still in use in several Asian countries and poses 

a significant problem for many patients with PIDs from these countries. Patients 

with hypogammaglobulinemia often receive it even before the diagnosis of 

immunodeficiency is established. These patients can also become infected with the 

vaccine strain of the virus through close contact in family and community, and it is 

very difficult to eliminate it from the body. Thus, immunodeficiency-associated 

vaccine-derived polioviruses (iVDPVs) remain a significant problem for these 

patients [75, 165]. They are also a potential reservoir for poliovirus transmission. In 

an international multicenter study, poliovirus shedding was studied in 653 patients 

with PIDs (570 had primary antibody deficiency and 65 had combined 

immunodeficiency). Thirteen patients (2%) shed polioviruses, and non-polio 

enteroviruses were detected in 30 patients. Five of them (0.8%) were classified as 

patients with immunodeficiency-related vaccine-derived poliovirus (iVDPV) [6, 

153]. 

In Russia, according to Mukhin et al., 2020, the minimum overall prevalence 

of PID is estimated at 1.3 per 100,000 people, with significant variations across 

federal districts (from 0.9 to 2.8 per 100,000; 3) (Figure 2) [166]. 
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Figure 2 - Distribution of PID (STIs) in Russia by Federal Districts [166] 

 

The Russian National Registry contains information on nearly 3000 patients 

(60% male, 40% female) from all federal districts of the Russian Federation, with 

68% being alive in 2020, of which 77% were children and 23% were adults. PID 

was diagnosed before the age of 18 in 88% of cases. The most common PID groups 

were antibody deficiencies (26%) and PID with syndromic features (22%). The 

overall prevalence of PID in the Russian population was minimal at 1.3 per 100,000 

individuals; the calculated birth rate of PID was 5.7 per 100,000 live births. The 

median delay in diagnosis was 2 years, with this indicator ranging from 4 months to 

11 years depending on the PID category [12, 166]. 

Since 1999, the International Union of Immunological Societies (IUIS) has 

classified inborn errors of immunity (IEIs) into ten groups, depending on which part 

of the immune system is affected. One of the identified groups, the tenth, includes 

autoimmune conditions and somatic variants that mimic genetically determined 

IEIs. Each IEI group is associated with unique phenotypic manifestations of 
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infections, autoimmunity, or inflammation. For example, patients with antibody 

deficiencies usually suffer from bacterial respiratory infections, while patients with 

deficiencies in the terminal complement fractions are prone to recurrent meningitis 

caused by Neisseria bacteria. The IUIS report identifies ten PID (IEI) groups, each 

of which is described in terms of its genetic cause [89]. 

Classification of Primary Immunodeficiencies 2022: 

1. Immunodeficiencies with a combination of cellular and humoral 

immune defects. 

2. Combined immunodeficiencies associated with syndromic 

manifestations. 

3. Predominantly antibody deficiencies. 

4. Immunodysregulation disorders. 

5. Inherited defects in the number and function of phagocytes. 

6. Defects in innate and adaptive immunity. 

7. Autoinflammatory syndromes. 

8. Complement deficiencies. 

9. Bone marrow failure. 

10. Phenocopies of primary immunodeficiencies. 

In brief, the main differences between primary immunodeficiencies (PIDs) 

depend on the level of genetic defects and corresponding defects in receptors or 

proteins. Functionally, the immune system is divided into two main components - 

innate and adaptive immune responses, and depending on which component of the 

immune response is primarily impaired, two major groups of immunodeficiencies 

can be conditionally distinguished. However, this classification most fully reflects 

the structure and diversity of innate immune errors [112] 

Modern methods for treating PIDs include symptomatic support, targeted 

therapy, replacement therapy, and two types of radical surgery: hematopoietic stem 

cell transplantation (HSCT) and gene therapy [110] It should be noted that gene 

therapy is still in the experimental stage of research, although it is already actively 

implemented in clinical practice for some forms of genetic pathology. For some 
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children with PIDs, HSCT is the most important and even the only way to treat the 

disease and restore immune system functions. Moreover, the absence of genetic 

confirmation is not a contraindication for HSCT [110]. 

One of the most important achievements of modern medicine is the speed of 

diagnosis, including screening technologies that allow for the identification of 

patients at preclinical stages of disease development. This enables timely treatment, 

preventing the establishment of pathological phenotypes. The analysis of TREC and 

KREC molecules in blood drops deposited on a Guthrie card is conducted in infants 

during the first few days of life and allows for the detection of severe combined 

immunodeficiencies and antibody formation defects that cause life-threatening 

diseases [1]. As of 2023, such tests for the quantitative determination of TREC and 

KREC are included in the expanded neonatal screening for all newborns in the 

Russian Federation (Ministry of Health of the Russian Federation Order No. 274n 

dated 21.04.2022) [7]. 

However, the diseases under consideration are not amenable to screening by 

this method and, like many other congenital conditions, are not immediately detected 

at birth but rather after a prolonged period of time. In primary immunodeficiencies, 

the speed of diagnosis is a critically important factor. The identification of SNPs that 

lead to diseases allows for their inclusion in automatic methods for assessing 

pathology, such as various diagnostic test panels (including NGS technology) and 

bioinformatics databases. 

1.2 - Primary immunodeficiencies and innate immunity mechanisms 

It is known that innate immunity includes epithelial and mucosal barriers, 

natural antimicrobial products, pattern recognition receptors, and cytokines. It 

phylogenetically precedes adaptive immunity and is present in all multicellular 

organisms, including plants, insects, and animals. Although innate immune cells are 

somewhat primitive, they organize a discrete immune response by recognizing 

different pathogens through pattern recognition receptors [108, 130, 157]. 

Neutrophils, macrophages, dendritic cells, natural killer (NK) cells, and NKT cells 
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in combination with natural barriers (primarily the skin, mucous membranes of the 

gastrointestinal and respiratory tracts), antimicrobial agents, opsonins (such as 

complement), and cytokines are the key components of innate immunity. 

Inherited immunodeficiencies that lead to increased susceptibility to 

tuberculosis and nontuberculous mycobacteria are collectively called Mendelian 

susceptibility to mycobacterial diseases (MSMD) [27, 36]. 

Macrophages phagocytize mycobacteria, leading to the production of 

interleukin (IL)-12 p70, the heterodimer of IL-12 p40 and IL-12 p35, as well as IL-

23, the heterodimer of IL-12 p40 and IL-12 p19. IL-12 and IL-23 stimulate T and 

NK cells to phosphorylate signal transducer and activator of transcription (STAT)4 

through their cognitive receptors, resulting in the production of interferon (IFN)-γ. 

The latter acts through its heterodimeric receptor, mainly phosphorylating STAT1 

and activating interferon-responsive genes that contribute to mycobacterial 

clearance. Inherited immunodeficiencies leading to increased susceptibility to 

tuberculosis and nontuberculous mycobacteria are collectively referred to as 

Mendelian susceptibility to mycobacterial diseases (MSMD) [27, 36]. In recent 

years, it has been established that patients with MSMD have mutations in seven 

different genes: IFNGR1, IFNGR2, STAT1, IL12B (IL-12p40), IL12RB1, TYK2, 

and IKBKG (NEMO), all of which are involved in IL-12/23-dependent, IFN-γ-

mediated immunity. Recently, mutations in the IRF8 gene have also been found to 

be associated with the development of mycobacterial diseases (MSMD). Specific 

mutations in these loci account for different forms of inheritance patterns (autosomal 

recessive, autosomal dominant, or X-linked), presence or absence of protein 

expression (missense or nonsense mutations), severity of the phenotype (complete 

or partial deficiency), and specific affected function. These syndromes are clinically 

heterogeneous and range from locally limited to life-threatening, widespread 

mycobacterial diseases. In addition to mycobacteria, other intracellular bacteria 

(such as Salmonella), viruses (such as the varicella-zoster virus), and fungi (such as 

histoplasmosis, coccidioidomycosis, and paracoccidioidomycosis) have been 

reported in patients with MSMD [181, 220]. 
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Mutations in Interferon-gamma receptor 1 (IFNGR1) were the first to be 

identified as causing innate susceptibility to mycobacteria. This gene can be mutated 

in a way that leads to recessive or dominant transmission. The dominant form is 

most commonly characterized by non-tuberculous mycobacterial osteomyelitis [45]. 

While recessive complete mutations usually do not allow for protein expression, 

dominant mutations are characterized by excessive accumulation on the surface of 

the mutated receptor, which still binds to IFN-gamma but significantly suppresses 

intracellular signaling. Deficiency of IL12RB1, detected in more than 140 patients 

worldwide, is the most common form of innate susceptibility to mycobacteria, but 

appears to be highly sensitive to the environment. Individuals carrying biallelic 

mutations may demonstrate very weak susceptibility to mycobacteria, Salmonella, 

or fungi, which correspond to partial penetrance and variable expressivity of this 

deficiency [21]. 

Male patients with mutations in NF-κB essential modulator (NEMO) exhibit 

a wide clinical heterogeneity. NEMO encodes the main modulator of the nuclear 

factor-κB, also known as IκB kinase (IKK)γ, a critical component of the IKK 

complex. Mutations in this gene cause various diseases: amorphic alleles, leading to 

null mutations, result in the development of pigmentation incontinence in females 

but are lethal for male fetuses. On the other hand, hypomorphic alleles can also lead 

to the development of pigmentation incontinence in females but manifest in males 

as different combinations of X-linked anhidrotic ectodermal dysplasia and 

immunodeficiency syndrome. X-linked anhidrotic ectodermal dysplasia with 

immunodeficiency is likely the most common phenotype, but there is a tremendous 

heterogeneity in this syndrome. Genotype-phenotype associations in this disease are 

surprisingly elusive, but mutations at the very C-terminus, including stop codons, 

have been linked to osteopetrosis and/or lymphedema [14, 158].  

To date, only two patients with complete Tyrosine Kinase 2 (TYK2) 

deficiency have been described [62]. Tyk2 is a member of the Jak/STAT signaling 

family and is constitutively bound to receptors for type I interferons (IFN-alpha and 

IFN-beta), interleukin-6, interleukin-10, interleukin-12, and interleukin-23. One 
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patient had a homozygous deletion of 4 base pairs, resulting in an early stop codon. 

He had a complex clinical phenotype characterized by viral (contagious molluscum, 

herpes simplex), fungal (oral candidiasis), bacterial (Staphylococcus aureus, atypical 

Salmonella), and mycobacterial (localized Calmette-Guérin bacillus) 

susceptibilities, as well as atopic dermatitis, moderate eosinophilia, and increased 

IgE levels in the blood serum. Recently, a second case was reported in which the 

patient did not have any allergic manifestations. Thus, Tyk2 deficiency disrupts 

signaling of type I IFN (susceptibility to viruses), IL-12/IL-23 signaling 

(susceptibility to mycobacteria and superficial fungi) [177], and IL-6 signaling 

(susceptibility to S. aureus) [175]. 

Mutations in STAT1 can be recessive or dominant, leading to deep 

susceptibility to broad infection in infancy (recessive complete deficiency) or milder 

susceptibility to mycobacteria, which manifests later in childhood (partial dominant 

deficiency) [18]. 

Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized 

by selective susceptibility to keratinocytic-tropic infections of human 

papillomavirus (subgroup B1) and usually manifests in early childhood [66, 117]. 

The WHIM syndrome (MIM 193670) is a rare autosomal dominant disorder with a 

frequency of approximately 1 case per 4.3 million live births [129]. The term 

"WHIM" is an abbreviation of its main clinical features, including warts, 

hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is 

characterized by a delay in the release of neutrophils from the bone marrow, leading 

to a decrease in their numbers in the blood. This can result in recurrent bacterial 

infections, especially of the skin, lungs, and sinuses. Hypogammaglobulinemia 

associated with WHIM syndrome is characterized by a reduction in all classes of 

immunoglobulins, making patients vulnerable to bacterial and viral infections. 

Warts, which are also a common feature of WHIM syndrome, can be persistent and 

recurrent [129].  Patients with WHIM syndrome may also have delayed bone 

marrow development, which can lead to myelodysplastic syndrome or acute myeloid 

leukemia. WHIM syndrome is caused by dominant heterozygous gain-of-function 
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(GOF) pathogenic variants in the gene encoding chemokine receptor 4 (CXCR4). 

Since CXCR4 is involved in the retention of neutrophils in the bone marrow, 

embryonic GOF mutations exacerbate this process, thereby slowing down the 

release of neutrophils, leading to neutropenia [129]. The ubiquitin system plays an 

important role in the regulation of TLR signaling. The ubiquitin system is a post-

translational modification system that regulates protein function [184]. In some 

situations, the ubiquitin molecule is attached to target proteins to form polyubiquitin 

chains. During the synthesis of these polyubiquitin chains, sequential conjugation of 

the C-terminal glycine residue involves conjugation of the glycine residue in one 

ubiquitin molecule with one of the seven lysine residues in another ubiquitin 

molecule [111]. 

1.3 - Autoinflammatory Syndromes and RBCK1 Deficiency 

Autoinflammatory diseases are a broad class of human pathologies associated 

with innate immunity errors and defects in inflammation mechanisms. This class of 

diseases was discovered relatively recently, but more than 40 autoinflammatory 

diseases are now known. The main characteristic of these diseases is uncontrolled 

autoinflammation in the absence of autoantibodies. Therefore, these syndromes were 

previously called idiopathic fevers, considering that spontaneous inflammation 

accompanied by fever is typical for them. However, autoinflammation mechanisms 

have been identified in many long-known diseases that are not directly related to the 

fever syndrome, such as obesity, rheumatoid arthritis, and Bechterew's disease. They 

represent inflammation of serous membranes - pleura, peritoneum, synovial 

membranes of joints, and eyes [161] 

Thus, RBCK1 deficiency (RanBP-Type And C3HC4-Type Zinc Finger-

Containing Protein 1) is an autoinflammatory syndrome, characterized by increased 

susceptibility to infections. In addition, RBCK1 deficiency is characterized by 

glycogen metabolism disorder leading to its accumulation in muscles 

(amylopectinosis). Patients with RBCK1 deficiency have broad and variable clinical 

manifestations, including fever, infectious syndrome (various skin inflammations, 
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recurrent bacterial infections, up to sepsis), as well as myopathies, 

cardiomyopathies, and encephalopathies [161]. 

It is known that RBCK1, also known as HOIL-1, is involved in the assembly 

of the linear ubiquitin chain complex. Ubiquitins are proteins that play the role of 

"death kisses" for proteins inside cells, marking them with a black tag for cleavage 

into amino acids in the proteasome. The linear ubiquitin chain assembly complex 

(LUBAC) includes RBCK1, RNF31 (ring finger protein 31, also known as HOIL-

1-interacting protein or HOIP), and SHARPIN (SHANK-associated protein with RH 

domain). The linear ubiquitin chain assembly complex (LUBAC) binds to linear 

(Met1) ubiquitin chains and directs several proteins into the classical NF-kB 

signaling pathway, preventing inflammation and participating in apoptosis [121, 

189]. 

Studies have shown that LUBAC-catalyzed linear ubiquitination in response 

to TNF-alpha stimulation participates in the activation of the canonical NF-kB 

pathway and prevents cell death [184]. RBCK1 (58 kDa, also known as HOIL-1) 

with two RanBP-type zinc fingers and a C3HC4-type RING finger is involved in the 

recognition of substrates for LUBAC catalysis. Therefore, RBCK1 deficiency 

affects the regulation of the immune system, leading to the development of 

autoinflammatory syndromes. RBCK1 (also known as HOIL-1) is a protein that 

forms a complex of approximately 600 kDa with two other proteins, SHANK-

associated RH domain-interacting protein (SHARPIN) and HOIL-1 Interacting 

Protein (HOIP-1) [32, 111]. 

Defects in each of the LUBAC proteins individually lead to autoimmune 

inflammatory syndromes. Known cases of HOIP deficiency in humans are 

associated with decreased expression not only of HOIP, but also of other LUBAC 

proteins. It is known that two patients with a HOIP defect have autoimmune 

inflammation (especially small joint polyarthritis from an early age), recurrent 

fevers, severe bacterial, viral, and fungal infections, and a pathological reaction to 

pneumococcal antigens during vaccination. Patients with a RBCK1 defect have a 

wide range of clinical outcomes, but the cause of this individual heterogeneity is 
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unknown. However, all cases are accompanied to some extent by defective glycogen 

accumulation [14, 95, 174]. 

Patients may simultaneously exhibit chronic autoimmune inflammation and 

immunodeficiency, including recurrent sepsis [161]. Patients identified to date with 

RBCK1 mutations (also known as RANBP2-type and C3HC4-type zinc finger-

containing protein 1) significantly differ in clinical outcome (skeletal muscle, 

cardiac muscle, autoimmune inflammation, or immunodeficiency). The explanation 

for this individual heterogeneity remains unclear, although it has been suggested that 

the precise location of the variant in the gene may be a predictor of the predominant 

phenotype, with mutations primarily leading to immunological dysfunction in the 

N-terminal region of RBCK1, and mutations in the middle or C-terminal portions 

leading to a (cardio-)myopathy phenotype [161]. M1-linked linear 

polyubiquitination is mediated by LUBAC, a complex modification that makes 

nuclear factor-kB (NF-kB) and its pleiotropic immune system critical for nuclear 

translocation and transcriptional control. RBCK1 and HOIP contain a RING-

between-RING (RBR) domain. The linear ubiquitin assembly complex (LUBAC), 

which includes HOIL-1-interacting protein (HOIP), Heme-oxidized IRP2 ubiquitin 

ligase-1 (HOIL-1), and SHANK-associated RH domain interactor (SHARPIN), 

often associates linear (Met1) ubiquitin chains in the canonical NF-kB pathway with 

many target proteins [73]. The linear ubiquitin-specific deubiquitinase OTULIN 

controls the function of LUBAC. Immune dysregulation is observed in mice and 

humans with defects in the processes of linear ubiquitination and K63 

deubiquitination [13]. 

HOIP is the catalytic subunit of the linear ubiquitination assembly complex 

(LUBAC), which is essential for NF-kB signaling and therefore for proper innate 

and adaptive immunity. To date, HOIP deficiency has been identified in only one 

individual with symptoms such as immunodeficiency, systemic lymphangiectasia, 

and autoinflammation [186].  

HOIP deficiency is also manifested by lymphangiectasia in systemic edema, 

gastrointestinal tract, and hypoalbuminemia, which can cause malabsorption. 
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Molecular studies have established that fibroblasts and B-cells from patients who 

are not responsive to immune stimuli and unable to maintain stable regulation of 

NF-kB activity have an immunodeficient phenotype observed in the patient. 

Compared to immune responses in fibroblasts, HOIP and HOIL1-deficient 

peripheral blood mononuclear cells (PBMCs) were highly reactive to IL-1 

stimulation and expressed proinflammatory cytokines IL-6 and MIP-1a. [198].  The 

HOIL-1 deficiency in patient cells resulted in a decrease in IKK kinase 

phosphorylation, a slowing of alpha IIB degradation, and a decrease in NEMO 

ubiquitination in response to TNF or IL-1β stimulation, and a lower level of NF-aB 

activation in patient cells was associated with a decrease in NF-aB transcriptional 

activity. The catalytic center of the Linear Ubiquitin Chain Assembly Complex 

(LUBAC) in fibroblasts and B cells from patients with HOIL-1 deficiency was 

relatively undetectable, indicating a deficiency in LUBAC in these patients. LUBAC 

is active in the NF-κB pathway and binds linear polyubiquitin chains to unique Lys 

residues of the NEMO protein. Human fibroblasts with HOIL-1 deficiency exhibit 

weakened NF-κB activation [13, 193], resulting in weak transcription of genes 

controlled by NF-κB and cytokine development in response to TNF and IL-1β. 

These data are consistent with the results of mouse cell studies with RBCK1 

knockout or knockdown gene [33].  

1.4 - Monogenic, Multigenic, and Allogeneic Defects in Congenital 

Neutropenia 

Neutropenia is a common disorder that pediatricians regularly encounter, and 

it is a serious health problem. In neutropenia, the absolute number of 

polymorphonuclear cells decreases, making the body more susceptible to infections. 

As a result, infections often become exceptionally severe or occur with an unusually 

high frequency. Neutrophils are an important component of innate immunity and a 

key product of hematopoiesis. The number of neutrophilic granulocytes in peripheral 

blood is used to determine the severity of neutropenia. In most cases, the etiology of 

neutropenia is iatrogenic and well-known to the treating physician. Allogeneic or 
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autoantibodies are the second most common cause of neutropenia. The ability of 

certain viral infections to induce neutropenia is well known [133, 144]. 

In addition to deviations from the normal range of leukocyte counts in 

childhood and variations in the average number of neutrophils in individuals of 

different races, an absolute neutrophil count below 1500/μl is considered 

neutropenia and is often the initial symptom of this condition. Neutropenia can take 

several forms, classified as mild when the absolute neutrophil count is between 

1000-1500/μl, moderate when it is between 500-1000/μl, and severe when it is less 

than 500/μl. Neutropenia is a common hematological condition in multiple primary 

immunodeficiencies with various genetic defects, ranging from congenital 

phagocytic defects to complicated immunodeficiencies, and can be used to screen 

for acute infections [4, 90]. 

Inheritance of congenital neutropenia associated with PID is complex, ranging 

from isolated severe congenital neutropenia to mental retardation, organ anomalies, 

facial dysmorphisms, and depigmentation of the skin. Phagocytic innate anomalies 

are divided into two categories according to the IUIS classification: deficiency of 

phagocytes (neutropenia) and dysfunction of phagocytic cells [4, 89]. Chronic or 

intermittent neutropenia may occur in a variety of inherited immune system 

disorders, including various forms of antibody deficiency, reticular dysplasia, 

WHIM syndrome, and other diseases. The main pathophysiological causes of severe 

chronic neutropenia in patients with PID include abnormal differentiation of bone 

marrow cells, improper release of granulocytes from the bone marrow, increased 

apoptosis or increased death of peripheral blood granulocytes [4, 89, 144, 233]. Bone 

marrow studies have shown that in most patients, myelopoiesis maturation stops at 

the level of promyelocytes, leading to a decrease in the number of neutrophils but 

an increase in the number of atypical promyelocytes [223]. Such infectious 

conditions as otitis, gingivitis, skin infections, pneumonia, deep abscesses, and 

sepsis in these patients begin in the neonatal period and, without appropriate 

treatment, persist throughout life. In addition, patients with severe combined 
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immunodeficiency (SCID) are at increased risk of developing leukemia. The cause 

of SCID can be variants of various genes [90, 49, 187]. 

The causes of congenital neutropenia may include defects in neutrophil 

maturation and function, immune dysregulation syndromes (various 

hemophagocytic lymphohistiocytosis), some severe combined immunodeficiencies 

(such as reticular dysgenesis (AK2 defect) and PAC2 activation defect), as well as 

primary autoimmune neutropenia at different stages of neutrophil development. 

Typically, patients with congenital neutropenia require antimicrobial prophylaxis 

and treatment with granulocyte colony-stimulating factor, and radical cure is 

impossible without hematopoietic stem cell transplantation. Currently, there are over 

30 inherited errors of immunity (or primary immunodeficiencies) that can cause 

neutropenia, and while each condition is rare, the overall prevalence of these 

conditions in the population is significant, and a good and timely diagnosis is 

necessary to prescribe adequate therapy. [104, 227]. 

It is known that mutations in the following PID genes lead to the development 

of neutropenia and congenital neutropenia: ELANE, HAX1, G6PC3, WASP, 

JAGN1, GFI1, SEC61A1, CSF3R, LYST, AP3P1, TCIRG1, VPS45, LAMTOR2, 

SBDS, DKC1, SLC37A4, BTK, CD40, CXCR4, AK2, GATA2, STK4, RMRP, and 

VPS13B. 

Classical congenital neutropenia depends on the function of elastase. Defects 

in elastase lead to severe congenital neutropenia (SCN) types 1 (ELANE 

deficiency), 2 (GFI1 deficiency), 3 (HAX1 deficiency or Kostmann's disease), 4 

(G6PC3 deficiency), 5 (VPS45 deficiency), glycogen storage disease type 1b 

(G6PT1 deficiency), X-linked neutropenia/myelodysplasia (WAS GOF mutation), 

P14/LAMTOR2 deficiency, Barth syndrome (3-methylglutaconic aciduria, type II) 

(TAZ deficiency, X-linked), Cohen syndrome (VPS13 B deficiency), Clericuzio 

syndrome (USB1 deficiency), JAGN1 deficiency, 3-methylglutaconic aciduria 

(CLPB deficiency), G-CSF receptor deficiency (CSF3R), SMARCD2 deficiency, 

specific granule deficiency (CEBPE), Shwachman-Diamond syndrome (caused by 
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defects in at least 3 genes, SBDS, DNAJC21, and EFL1), HYOU1 deficiency, and 

SRP54 deficiency [188]. 

ELANE (OMIM #130130) encodes neutrophil elastase, a serine protease 

expressed in myelomonocytic cells and their precursors. Neutrophil elastase is 

mainly produced at the promyelocytic stage of neutrophil maturation and is retained 

in the azurophilic neutrophil granules that participate in the destruction of 

microorganisms [10, 96]. However, even when only this protein is mutated, different 

clinical pictures of congenital neutropenia are observed, and the exact pathogenesis 

of each condition remains unclear [68,137,139, 190].  

The main mechanisms of neutropenia in the case of a defect in neutrophil 

elastase are related to endoplasmic reticulum stress (unfolded protein response) 

caused by the accumulation of misfolded elastase in the endoplasmic reticulum, 

leading to the activation of death signals [81, 96]. It is known that ELANE becomes 

the most abundant protein at the promyelocyte stage of neutrophil development, 

reaching millimolar concentrations in neutrophils, supporting the theory that 

accumulation of misfolded protein may cause a deficiency of chaperone proteins, 

which activates death signals and apoptosis of immature neutrophils [31, 33]. On the 

other hand, mutated neutrophil elastase blocks further differentiation, leading to 

neutropenia [137]. In addition, the ELANE p.G185R polymorphism is associated 

with impaired neutrophil differentiation and decreased expression of genes encoding 

critical hematopoietic transcription factors, cell surface proteins, and neutrophil 

granule proteins [96, 137]. 

The T-cell immune regulator 1 gene (TCIRG1) encodes a subunit of the large 

protein complex known as vacuolar H+-ATPase (V-ATPase). This protein complex 

acts as a pump for moving protons across membranes. This proton movement helps 

regulate the pH of cells and their surrounding environment. V-ATPase-dependent 

acidification of organelles is necessary for intracellular processes such as protein 

sorting, zymogen activation, and receptor-mediated endocytosis. V-ATPase consists 

of a cytosolic V1 domain and a transmembrane V0 domain. Alternative splicing 
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results in many transcript variants. Mutations in this gene are associated with 

infantile malignant osteopetrosis and severe congenital neutropenia. 

The TCIRG1 gene in humans is primarily associated with autosomal recessive 

osteopetrosis. Molecular analysis has identified six new genes (TNFSF11, 

TNFRSF11A, CLCN7, OSTM1, SNX10, and PLEKHM1) associated with 

autosomal recessive osteopetrosis in humans. More than half of all patients with 

autosomal recessive osteopetrosis have mutations in the TCIRG1 gene [20, 202]. 

Studies have shown that mice with disrupted Atp6i gene function develop severe 

osteopetrosis [23, 41]. Despite significant progress in understanding the mechanisms 

of osteoporotic diseases, the genetic basis of 30% of cases remains unclear [148]. 

According to research, TCIRG1 mutations include missense, nonsense, small 

deletions/insertions, splice-site mutations, significant genomic deletions, and 

intronic mutations [26, 34, 60, 138]. Autosomal recessive osteoporosis type 1 is 

caused by mutations in the TCIRG1 gene, leading to impaired bone resorption and 

abnormal accumulation of dense bone tissue. This can lead to fractures, bone marrow 

insufficiency, neurological problems, and immunodeficiency, which can ultimately 

result in premature death. This problem can be detected as early as 10 days of age. 

The most common symptoms of the disease are pathological fractures, bone marrow 

insufficiency, and compression of cranial nerves, which are caused by abnormalities 

in bone tissue structure, metabolism, and insufficient foramen expansion of cranial 

nerves [26]. High bone density can result from impaired bone resorption caused by 

osteoclast dysfunction, which can lead to serious abnormalities. Some defects may 

arise at early stages of fetal development, such as microcephaly, progressive 

deafness, blindness, hepatosplenomegaly, and severe anemia. Secondary 

intracranial hypertension can often lead to deafness and blindness [198]. 

There are numerous examples of multigenic (or polygenic) causes of 

congenital neutropenia (CN), where mutation variants in multiple genes may 

contribute to the formation of similar or different phenotypes of this disease [48]. 

Why is CN more multigenic compared to other PID? One possible reason is that the 

multigenic nature of CN is a result of complex interactions between genes.   
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Understanding the mechanism of their interaction should help doctors and 

researchers gain insight into the pathophysiology of PID, enabling improved 

diagnosis and treatment approaches. The key mechanisms underlying the protein-

protein interaction network of genes in congenital neutropenia (CN) remain unclear, 

lacking a systematic level of interpretation. With the recent accumulation of new 

gene expression data in CN [16, 50] and modern computational methods [97], there 

is an urgent need to identify candidate genes for CN. The use of systems biology and 

bioinformatics methods will accelerate and improve the accuracy of identifying new 

CN genes, allowing for a deeper understanding of the pathogenetic mechanisms of 

this disease. Furthermore, this is a cost-effective and fast method that will assist 

clinicians in diagnosing patients with CN phenotype and unknown genetic causes. 

1.5 - Hennekam syndrome, phenotype and genotype 

Hennekam syndrome is an autosomal recessive disorder and is one of the rarest 

forms of primary immunodeficiency, characterized by developmental defects of the 

lymphatic system [87]. The underlying cause of Hennekam syndrome is primary 

lymphedema-lymphangiectasia, which is attributed to defects in the development 

and/or functioning of the lymphatic system. It can affect any part of the body, with 

a predominance in the lower extremities, intestines, abdominal and pleural cavities. 

Additionally, patients with this condition often have flattened facial features, a broad 

nasal bridge, hypertelorism, epicanthus, and other anomalies [25]. Currently, 27 

different genes have been associated with primary lymphedema (either isolated or 

as part of a syndrome). It was previously believed that the common signaling 

pathway in the pathogenesis of lymphedema was the VEGFR3 receptor signaling 

pathway. However, this pathway is only responsible for a third of all cases of 

primary lymphedema, highlighting the existence of additional genetic factors. 

Hennekam lymphangiectasia-lymphedema syndrome may be caused by mutations 

in the CCBE1 gene (in 25% of cases), as well as in the FAT4 and ADAMTS3 genes, 

each of which influences the VEGF-C / VEGFR-3 signaling pathways [37, 67, 136, 

226]. 
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Hennekam syndrome type 1, also known as CCBE1-associated Hennekam 

syndrome, was first described by Dutch physician Raoul Hennekam in 1989 [25]. 

The main molecular mechanism of lymphedema in Hennekam syndrome type 1 is 

the reduced ability of mutated CCBE1 (collagen and calcium-binding protein 1, 

containing an epidermal growth factor domain) to accelerate and concentrate the 

activation of the primary lymphangiogenic growth factor VEGF-C [226]. 

For Hennekam syndrome type 2, the cause is a homozygous or complex 

heterozygous mutation in the FAT4 gene on chromosome 4q28. Interestingly, a 

mutation in the FAT4 gene can also cause Van Maldergem syndrome (VMLDS2), 

another disorder in which some symptoms overlap with those of Hennekam 

syndrome [83]. 

In a 2017 study, a group of authors led by P. Brouillard identified Hennekam 

syndrome type 3, in which a heterozygous mutation was found in the ADAMTS3 

gene on chromosome 4q13. More importantly, the researchers highlighted the close 

functional relationship between ADAMTS3 and CCBE1 proteins in the activation 

of the VEGFR3 molecule, which is a cornerstone for the differentiation and 

functioning of lymphoid endothelial cells [124]. However, mutations in these genes 

are only found in some patients, and the genetic etiology of most Hennekam 

syndrome patients remains unclear, mainly because the syndrome is genetically 

heterogeneous. 

Knowledge about the genetic cause of Hennekam syndrome has allowed for 

the identification of the involvement of the mTOR (mammalian target of rapamycin) 

signaling pathway and the discovery of a potential therapeutic target, specifically 

mTOR inhibitors such as rapamycin and its analogues. mTOR is a protein that plays 

a role in regulating cell growth and metabolism, and its dysregulation has been 

implicated in the pathogenesis of several genetic diseases, including Hennekam 

syndrome. mTOR inhibitors halt the progression of lymphedema and lymphatic 

malformations, and also have anti-inflammatory and anti-fibrotic effects, but they 

do not cure patients of existing lymphatic system abnormalities and their overall 
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efficacy is not high. Therefore, understanding the genetic nature and pathogenesis 

of Hennekam syndrome will help identify more effective targets for therapy. 

1.6 - Problems in the study of primary immunodeficiencies 

The following facts make primary immunodeficiency a complex group of 

diseases for both practicing physicians and scientific researchers [3, 5, 8]. 

In the coming years, it will be extremely important to ensure universal access 

to numerous scientific achievements and create a sustainable mechanism for timely 

consideration of these achievements in future developments [118]. Although next-

generation sequencing is a revolutionary method for PID diagnosis, it is not available 

in many countries, especially in low-income countries. Therefore, there is a real task 

of achieving accessibility of this diagnostic method and reducing the cost of genetic 

testing. It is also necessary to make other express tests for screening of antibody 

deficiency syndromes easily accessible, which potentially could facilitate testing in 

remote areas of countries with limited resources. In addition, newborn screening for 

SCID and other lymphopenias represents hope for early diagnosis and treatment of 

PID, but it needs to be implemented more widely in public and private medical 

institutions, as it allows for the early detection of PID [9]. Following the United 

States, several European countries have started pilot studies to implement neonatal 

screening, or have already introduced it as a government project, as has been done 

in the Russian Federation [7]. 

Access inequality to treatment and care for patients with PID, including issues 

of reimbursement, availability, and creating an organizational structure for access to 

medical care, etc., needs to be addressed. Additionally, a quantitative analysis of the 

need for care in various regions of the world, especially in the Asia-Pacific region, 

is necessary to support advocacy efforts to increase government investment in the 

treatment and research of PID [56]. 

As there is still limited awareness among the general public about PID, they 

are often perceived as "exotic" diseases. Improving awareness, understanding, and 

timely recognition of new forms of PID can change the lives of many patients in the 

future. It is necessary to continue working together to maintain the supply of plasma-
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derived medicines worldwide, including during times when healthcare systems 

experience difficulties in blood and plasma supply. 

The constant need for the discovery of new advanced treatment methods is the 

second obstacle because we are uncovering new types of diseases and better 

understanding their nature. 

The second stumbling block is that the phenotypic changes associated with 

PID are usually very diverse. For example, in the case of patients with Wiskott-

Aldrich syndrome, the exact nature of the gene defect, such as missense or nonsense 

mutation, the exact location of splice site anomalies, can significantly alter the 

phenotype of the syndrome. The manifestations of mutations in this gene can range 

from very severe to mild, such as X-linked thrombocytopenia, B-cell lymphoma, 

frequent bacterial and fungal infections, eczema, low platelet count, or neutropenia. 

The diagnosis of PID usually requires an in-depth analysis of clinical manifestations 

in combination with an assessment of the patient's history and genealogy. 

The major problem faced by researchers and clinicians is the difficulty in 

finding information. Publicly available databases contain limited samples, which are 

also less diverse compared to oncology data. There are very few information 

resources that connect clinical descriptions and functional genomic data, protein-

protein interactions, and signaling pathways. Specialized databases include UniProt, 

IntAct, STRING, and KEGG. 

Several databases, registries, knowledge bases, prediction tools, and expert 

systems are rapidly evolving in response to diagnostic requirements. According to 

Richardson A.M. et al.'s 2018 article, the disease spectrum is further refined due to 

the expansion of immunological, genetic, and epigenetic knowledge. The careful 

application of these diagnostic tools and bioinformatics will not only help 

understand these complex disorders, but also enable personalized therapeutic 

approaches for disease treatment [61]. Krina Samargiti et al. in 2009 explained that 

tools useful for PID diagnosis can be classified into the following seven categories 

(Figure 3) [183]. 
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Firstly, the primary resources on PID provide a large amount of information 

ranked at different levels, ranging from genes to protein structures, disease models 

to specific diagnostic groups, and so on. 

Secondly, there are classifications of PID that contain clinical features. 

Thirdly, there are laboratory criteria and corresponding tools. 

Fourthly, there are national and international patient registries for PID, 

supplemented with mutation databases (the fifth category), whose information can 

be used to compare the case under consideration with previously described cases. 

Fifthly, there are bioinformatics tools available for predicting or prioritizing 

new PID candidate genes, which are also used in PID diagnosis – this is the seventh 

category. 

 

Figure 3 - Schematic grouping of bioinformatics resources and tools that provide 

information on primary immunodeficiencies [183] 

A rational approach to selecting and interpreting genomic analysis in primary 

immunodeficiencies facilitates the integration of clinical data with immunological 

and genetic data for establishing a diagnosis [61]. 
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Currently, genome-wide association studies (GWAS) are being conducted on 

common diseases to identify common low-penetrance causal variants. Some of these 

variants will alter protein sequences, the most common of which is a non-

synonymous single nucleotide polymorphism (nsSNP). The advantage of nsSNPs is 

the ability to predict their functional impact on protein structure and function, both 

for the final identification of the causal variant in the disease-associated 

chromosome region and for further functional analysis of the nsSNP and the 

associated protein [72]. 

It is known that non-synonymous SNPs (nsSNPs) alter protein function and 

are more likely to cause disease in humans. Recent nsSNP studies using 

computational approaches show the potential impact of mutations on understanding 

the molecular mechanisms of various diseases [17, 41]. 

Studies have demonstrated that bioinformatics analysis of gene expression 

profiles has significant potential in uncovering potential key genes and pathways in 

the development of complex diseases [30, 180, 218]. 

The large number of different primary immunodeficiencies (PIDs) poses 

difficulties in diagnosis, including at the clinical level. Additionally, many diseases 

are so rare that it is impossible to find a sufficient number of families for analysis. 

Screening and early detection of PIDs is a serious challenge for physicians. In recent 

years, high-throughput sequencing has yielded a greater number of known genetic 

defects. The identification of new candidate genes for PIDs will help prioritize genes 

for confirmation in PID patients whose exact causal gene has not yet been identified. 

In 2009, Keerthikumar et al. used a support vector machine method to classify 

all human genes into PID genes and non-PID genes. The classification principle was 

based on calculating a confidence score for each PID gene candidate based on 69 

features observed for 148 known PID genes at that time [163]. Based on a literature 

search, we found that the attention of scientific researchers involved in identifying 

PID genes has also focused on integrating functional gene ontology (GO) 

annotations and building datasets of protein-protein interaction networks. In 2018, 

Guojun Liu and colleagues identified 172 candidate genes for common variable 
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immunodeficiency (CVID) with similar biological functions to known CVID genes, 

and eight genes were recently announced as CVID-associated genes [38, 94]. 

Ortutay et al. (2008) predicted 26 candidate PID genes by analyzing protein-protein 

interaction network properties (PPI) of all known human immune system genes and 

their ontologies (GO). In addition, 3,110 candidate disease genes related to PID were 

predicted based on the calculation of the so-called biological distance (indicating 

functional interdependence) [133, 159]. 

Researchers who wish to participate in the study of PID problems face the 

question of whether PID is a multigenic or monogenic disease. Initially, PID was 

considered to be a congenital and monogenic disease that follows the principles of 

Mendelian inheritance [174, 178]. Monogenic diseases result from changes in a 

single gene that occur in all cells of the body. However, progress in DNA sequencing 

has led to the discovery of multigenic and somatic causes of PID, and a wide 

phenotypic variability has been observed for these diseases [80, 211]. Understanding 

that most PIDs are multigenic in nature is the first step in understanding the 

pathogenesis of all diseases. According to the multigenic concept, PIDs are the result 

of complex interactions between genes. Based on this, scientists tried to find the 

"biological distance" between PID genes and other human protein-coding genes; it 

was found that PID genes, compared to other human genes, are usually located in 

the central node of the human genomic network and interact more closely with each 

other [107]. In addition, PID genes form several closely related subclusters, most of 

them having at least one functionally close neighbor among a wide range of 

biological mechanisms [38, 107. 201]. Uncovering these relationships may provide 

a better understanding of the diversity of genetic pathways underlying PID, which, 

in turn, will help unlock new opportunities for drug development and therapeutic 

approaches. 

Genetic changes can lead both to a complete or partial loss of a protein 

(nonsense variants), a decrease in its function (LOF - loss of function), and a gain of 

function (GOF - gain of function). This is true for any proteins, including key 

molecules involved in the immune response. To date, pathological variants of more 
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than 485 genes included in the classification of congenital immunity errors (CIs) are 

known [89], but a larger number of genes, whose research is in the earlier stages of 

study, are awaiting detailed description. An important factor complicating the search 

for causative genetic changes in a large number of diseases is the huge phenotypic 

heterogeneity of congenital immunity errors, including defects in antibodies, 

lymphocyte populations and subpopulations, complement system deficiency, 

autoimmune and autoinflammatory pathologies, lymphoproliferative syndromes, 

bone marrow failure, and immune dysregulation diseases. In a large cohort of 

immunodeficiencies, combined immune-dependent processes such as autoimmune 

and/or immune dysregulation can be observed, especially in cases in which genetic 

errors lead to alterations in the molecules that regulate the immune response or are 

involved in providing immune tolerance processes [146]. 

Despite the fact that, until recently, PIDs were considered rare diseases and 

individual genetic disorders may be infrequent, collectively they can affect a 

significant number of people. Moreover, as a result of improved diagnosis, due to 

the development of next-generation sequencing (NGS) technologies, the reported 

prevalence of primary immunodeficiencies (PIDs) has increased in recent years to 

approximately 40 per 100,000 population [89, 164]. 

It is necessary to consider the complex interrelationships of all genes and 

proteins in the body, since a simple genotype-phenotypic correlation very often 

remains unclaimed - patients with a defect of the same gene can have a 

fundamentally different phenotypic presentation [11].  

If there is an assumption that there is an association between a PID phenotype 

and a gene that has not been previously described from this point of view, thorough 

functional studies confirming or refuting this association are required to make a 

statement of a new disease or its new phenotypes. Investigating the values of genetic 

alterations for immune system function has the unique advantage that immune cells 

are readily available, usually requiring simple blood sampling to obtain the relevant 

cells, in contrast to mutations affecting other hard-to-reach tissues (54).  



44 
 

In order to prove causality, studies must demonstrate the significance of a 

specific pathological gene variant with abnormalities of a specific immune process 

leading to the corresponding disease phenotype. That is, a functional validation must 

be performed, which includes assessment of the number and function of proteins, 

analysis of signaling pathways, and the biological mechanism of pathology 

implementation [89, 164]. 

Determining the causal relationship of new mutations is easier when several 

unrelated families with similar genetic variants and phenotype are identified. 

However, new diseases may have single descriptions. Some limitations of single-

patient studies are the lack of statistical power or the presence of confounding 

genetic modifiers, which reduces the ability to identify a particular variant as a 

disease-causing mutation. Experimental modeling of genetic changes in cell lines or 

animal models overcomes these limitations. To confirm a new gene whose 

pathological variants can lead to the development of PIDs in a single individual, the 

following criteria must be met: the genotype found cannot be in individuals without 

a clinical phenotype; experimental studies must demonstrate that the variant 

damages, destroys, or alters the function or expression of the gene product; the 

causal relationship between the genotype and the clinical phenotype must be 

confirmed in an appropriate cell or animal model [80]. 

It should be noted that bioinformatics is now becoming an increasingly 

prominent part of various fields of biology, including molecular biology, statistics 

and genetics, which play a crucial role in analyzing the expression and regulation of 

genes and proteins [195]. The study of the effect of single-nucleotide 

polymorphisms - SNPs - in the coding part of the genome, which directly affect the 

structure of proteins, is the focus of the vast majority of the scientific community. 

According to estimates by various researchers, about 90% of genetic variations in 

humans are due to single-nucleotide polymorphisms. They are determined with a 

frequency of 1% to 5%, depending on the pathology under study. The values of allele 

distribution frequencies are important for determining the relevance of SNPs in a 

particular population and for understanding the potential effect of this SNP on 
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susceptibility to diseases or other characteristics of interest [179]. The HapMap 

project, an international collaborative effort aimed at identifying common genetic 

variations among humans, has described and genotyped over 4 million DNA 

samples. This has made it possible not only to validate SNPs and estimate the 

frequency of their alleles in the general population, but also to assess the degree of 

linkage disequilibrium between them. Moreover, SNP genotyping technologies have 

recently advanced to the point where hundreds of thousands of SNPs can be typed 

in thousands of people, for example, using the case-control method. Consequently, 

the discovery of causal variants for common diseases will accelerate, and it would 

be helpful if the functional effects of SNPs could be predicted bioinformatically to 

guide functional studies and narrow down the best candidate SNPs in areas of the 

genome that exhibit a high degree of disequilibrium [46]. This is why the science of 

bioinformatics is becoming an integral part of modern research.  

The most identifiable category of SNPs is a small fraction of mutations (less 

than 1%) that alter the protein sequence, and these are usually nonsynonymous 

substitutions (nsSNPs). The nsSNP prediction tools are used to predict the potential 

structural and functional impact caused by these variants. In order to more accurately 

assess the structural impact caused by changes in the amino acid sequence, 

bioinformatic analysis and protein structure modeling is required to account for 

changes in the amino acid sequence. Knowledge of the three-dimensional structure 

of a gene product is of great help in predicting and understanding its function, its 

role in intracellular processes and in pathology formation, molecular dynamics 

modeling can be performed to observe changes in many parameters such as protein 

stability and flexibility. Interdisciplinary modeling (bioinformatics, 

pathophysiology, genetics and immunology) is gradually becoming a major trend in 

the development of technologies for clinical research [46].   

The identification of candidate genes for various types of pathology requires 

their verification, which requires not only the use of clinical data but also 

experimental data, as well as analysis of gene co-expression, activation of biological 
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signaling pathways, protein-protein interaction, and evaluation of the functioning of 

the altered protein in the simulation. 

Methods for integrating expression profiles and protein-protein interaction 

(PPI) data are an important part of the ongoing research. Bioinformatics methods are 

used to study the differential mechanisms of protein interactions in all immune cell 

lines, transcriptional activators and modules, which are analyzed in the context of 

examples obtained by clustering the PPI network. The results of such studies 

demonstrate that integration of protein interaction networks with the most 

comprehensive database of immune cell gene expression profiles can be used to 

generate hypotheses about the mechanisms underlying differentiation and 

differential functional activity across immune cell lines. Comparative analysis of the 

detected differences between diseased and healthy states helps to obtain 

pathogenetic characterization of immune-dependent diseases and ultimately lead to 

the development of new curative methods of pathology correction.  

Currently, research on differentially expressed genes defines one of the 

special scientific directions in which the identification of genes that are differentially 

expressed in diseases is assumed. In pharmaceutical and clinical research, the results 

of evaluating differentially expressed genes can be valuable targets for identifying 

candidate biomarkers, therapeutic targets, and gene signatures for diagnosis. 

Although specific changes in gene expression do not always lead to subsequent 

biological activity, such data can nevertheless be combined with other biological 

data and, with the ability to provide high throughput to create complex analyses, 

such as building a target disease landscape [123, 213], can be an indispensable 

research tool [63]. 

In our work, aimed at finding significant pathophysiological mechanisms for 

the formation of certain types of immune-dependent pathology, various sites with 

congenital immune disorders, including congenital neutropenia, RBCK1 deficiency 

autoflammatory syndrome and Hennecam syndrome, were chosen as models of 

immune-dependent pathology using research methods of bioinformatics analysis in 

disorders characteristic of primary immunodeficiencies. 
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CHAPTER 2 - MATERIALS AND METHODS USED IN THE WORK 

 

2.1 - Study materials 

The data were collected from open data sources, various gene variant 

databases, as well as two blinded sequencing results of Sverdlovsk patients, which 

were provided for study to the Institute of Immunology and Physiology, UrB RAS, 

previously approved by the ethical committee and published. 

Two datasets (datasets) from the NCBI GEO database were used to perform 

the task of investigating the pathogenesis of RBCK1 deficiency, viz: GSE40561, 

which includes data from whole blood collected from 2 patients with 

CINCA/NOMID disease, 5 patients with Muckle-Wells syndrome, 2 patients with 

mevalonatkanase deficiency, 1 patient with RBCK1 deficiency and 41 healthy 

children (for comparative analysis); GSE31064, which included data obtained from 

skin fibroblast cells of 2 patients with RBCK1 deficiency, 1 patient with MYD88 

deficiency, 1 patient with NEMO syndrome, and 3 healthy patients (from a control 

group). 

Data sets from NCBI GEO were used for the task of investigating candidate 

genes associated with congenital neutropenia: GSE142347 (patients with congenital 

neutropenia - 93 women and 95 men, and 193 control patients); GSE6322 (family 

case - 2 healthy parents and 2 children with congenital neutropenia). A list of 442 

known PID genes (and microdeletions) at the time of the study, including 31 genes 

associated with congenital neutropenia, were obtained from the European 

Immunodeficiency Society website. CD3D, CD3E, CD3Z, CORO1A, IL2RG, 

IL7R, JAK3, LAT, PTPRC, ADA, AK2, DCLRE1C, LIG4, NHEJ1, PRKDC, 

RAC2, RAG1, RAG2, B2M, BCL10, CARD11, CD3G, CD40 (TNFRSF5), 

CD40LG (TNFSF5), CD8A, CIITA, DOCK2, DOCK8, FCHO1, ICOS, ICOSLG, 

IKBKB, IKZF1, IL21, IL21R, ITK, LCK, MALT1, MAP3K14, MSN, POLD1, 

POLD2, REL, RELA, RELB, RFX5, RFXANK, RFXAP, RHOH, STK4, TAP1, 

TAP2, TAPBP, TFRC, TNFRSF4, TRAC, ZAP70, ZAP70, ARPC1B, WAS, 

WIPF1, ATM, BLM (RECQL3), CDCA7, DNMT3B, GINS1, HELLS, LIG1, 
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MCM4, NBS1, NSMCE3, PMS2, POLE1, POLE2, RNF168, ZBTB24, 11q23del, 

22q11.2, CHD7, Del10p13-p14, FOXN1, FOXN1, SEMA3E, TBX1, EXTL3, 

MYSM1, RMRP, RNU4ATAC, SMARCAL1, CARD11, ERBB21P, IL6R, IL6ST, 

PGM3, SPINK5, STAT3, TGFBR1, TGFBR2, ZNF341, MTHFD1, SLC46A1, 

TВН2, IKBKB, IKBKG, NFKBIA, ORAI1, STIM1, BCL11B, CCBE1, EPG5, 

FAT4, KDM6A, KMT2A, KMT2D (MLL2), NFE2L2, PNP, RBCK1, RNF31, 

SKIV2L, SP110, STAT5B, STAT5B, TTC37, TTC7A, BLNK, BTK, CD79A, 

CD79B, IGHM, IGLL1, PIK3CD, PIK3R1, SLC39A7, TCF3, TCF3, TOP2B, 

ARHGEF1, ATP6AP1, CD19, CD20, CD21, CD81, IKZF1, IRF2BP2, MOGS 

(GCS1), NFKB1, NFKB2, PIK3CDGOF, PIK3R1, PTEN, RAC2, SEC61A1, 

SH3KBP1, TNFRSF13B, TNFRSF13C, TNFSF12, TRNT1, AICDA, AICDA, 

INO80, MSH6, UNG, CARD11, IGKC, Mutation or chromosomal deletion at 

14q32, FAAP24, PRF1, SLC7A7, STX11, STXBP2, UNC13D, AP3B1, AP3D1, 

LYST, RAB27A, BACH2, CTLA4, DEF6, FERMT1, FOXP3, IL2RA, IL2RB, 

LRBA, STAT3, AIRE, AIRE, ITCH, JAK1, PEPD, TPP2, IL10, IL10RA, IL10RB, 

NFAT5, RIPK1, TGFB1, CASP10, CASP8, FADD, TNFRSF6, TNFSF6, 

CARMIL2, CD27, CD70, CTPS1, MAGT1, PRKCD, RASGRP1, SH2D1A, 

TNFRSF9, XIAP, CEBPE, CLPB, CSF3R, DNAJC21, EFL1, ELANE, G6PC3, 

G6PT1, GFI1, HAX1, HYOU1, JAGN1, LAMTOR2, SBDS, SMARCD2, SRP54, 

TAZ, USB1, VPS13B, VPS45, WAS, ACTB, CFTR, CTSC, FERMT3, FPR1, 

ITGB2, MKL1, RAC2, SLC35C1, WDR1, CYBA, CYBB, NCF1, NCF2, NCF4, 

CYBC1, G6PD, GATA2, CSF2RA, CSF2RB, CYBB, IFNGR1, IFNGR1, IFNGR2, 

IL12B, IL12RB1, IL12RB2, IL23R, IRF8, IRF8, SG15, JAK1, RORC, SPPL2A, 

STAT1, TYK2, TYK2, CIB1, CXCR4, TMC6, TMC8, FCGR3A, IFIH1, IFNAR1, 

IFNAR2, IRF7, IRF9, POLR3A, POLR3C, POLR3F, STAT1, STAT2, DBR1, 

IRF3, TBK1, TICAM1, TLR3, TLR3, TRAF3, UNC93B1, CARD9, IL17F, 

IL17RA, IL17RC, STAT1, TRAF3IP2, IRAK1, IRAK4, MYD88, TIRAP, APOL1, 

CLВН7, HMOX, NBAS, NCSTN, OSTM1, PLEKHM1, PSEN, PSENEN, 

RANBP2, RPSA, SNX10, TCIRG1, TNFRSF11A, TNFSF11, IL18BP, IRF4, 

ACP5, ADA2, ADAR1, DNASE1L3, DNASE2, IFIH1 (GOF), OAS1, 
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RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, TMEM173, TREX1, USP18, 

POLA1, MEFV, MEFV, MVKNLRC4, NLRP1, NLRP1, NLRP12, NLRP3, 

NLRP3, NLRP3, PLCG2, ADAM17, ALPI, AP1S3, CARD14, COPA, HAVCR2, 

IL1RNIL36RN, LPIN2, NOD2, OTULIN, PSMB8*, PSMB8*, PSMG2, PSTPIP1, 

SH3BP2, SLC29A3, TNFAIP3, TNFRSF1A, TRIM22, C1QA, C1QB, C1QC, C1R, 

C1R, C1S, C1S, C2, C3C3, C4A, C4B, C5, C6, C7, C8A, C8B, C8G, C9, CD46, 

CD55, CD59, CFB, CFB, CFD, CFH, CFH, CFHR1, CFHR2, CFHR3, 

CFHR4CFHR5, CFHR1CFHR2, CFHR3CFHR4, CFHR5, CFI, CFP, FВН3, 

MASP2, SERPING1, THBD, ACD, ACD, BRCA1, BRCA2, BRIP1, CTC1, DKC1, 

DNAJC21, ERCC4, ERCC6L2, FANCA, FANCB, FANCC, FANCD2, FANCE, 

FANCF, FANCI, FANCL, FANCM, MAD2L2, NOLA2, NOLA3, PALB2, PARN, 

RAD51, RAD51C, RFWD3, RTEL1, RTEL1, SAMD9, SAMD9L, SLX4, SRP72, 

STN1, TERC, TERT, TERT, TINF2, TINF2, TP53, UBE2T, WRAP53, XRCC2, 

XRCC9. 

The list of 31 genes associated with congenital neutropenia used in this study 

includes: MTHFD1, LYST, CSF3R, ELANE, JAGN1, LAMTOR2, SMARCD2, 

VPS13B, WAS, WDR1, CXCR4, TCIRG1, HAX1, G6PC3, GFI1, GATA2, 

SLC37A4, SBDS, STK4, CLPB, AP3B1, USB1, VPS45, CXCR2, EIF2AK3, 

RAB27A, AK2, RMRP, TBN2, TAZ, and CD40LG. 

A study on gene variants in patients with congenital neutropenia and 

Henneman syndrome from the Sverdlovsk region was conducted using de-identified 

data voluntarily provided by the patients' parents for bioinformatic analysis with the 

approval of an ethics committee. Only VCF files with missense mutations in the 

FAT4 (Henneman syndrome) and TCIRG1 (congenital neutropenia) genes, as well 

as de-identified clinical data, were used. Medical observation and clinical research 

on the patients were carried out prior to our study in medical organizations in the 

Sverdlovsk region. 

Data on various missense mutations for genes associated with the investigated 

diseases were obtained from public databases. Specifically, FAT4, ADAMTS3, 

CBEE1, ELANE, and TCIRG1 were obtained from the publicly available dbSNP 

database on the National Center for Biotechnology Information (NCBI) portal 
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(https://www.ncbi.nlm.nih.gov/snp/), as well as the Ensmble database 

(https://www.ensembl.org/index.html), Swiss-Prot database (http://expasy.org./), 

OMIM (https://www.omim.org/) and HGMD (https://www.hgmd.cf.ac.uk/). 

The dbSNP database is an online resource designed to aid researchers in the 

field of biology. Its aim is to create a unified database containing all identified 

genetic variations (single nucleotide polymorphisms) that can be used to investigate 

a wide range of genetically determined natural phenomena. In particular, access to 

molecular variations catalogued in dbSNP helps to carry out fundamental research, 

such as physical mapping, population genetics, evolutionary relationships, and 

enables rapid and quantitative assessment of variations in a particular genomic 

region (Figure 4). Most of these nucleotide sequence variations were identified 

through DNA sequencing and genotyping of samples from the general population, 

in addition to the group of patients (Figure 5). 

The Ensembl database (USA) allows for the analysis of transcription for a 

specific gene, as well as corresponding protein sequences and their various variants. 

Specifically, for our analysis, we uploaded a CSV file of variants for the genes we 

investigated into the database (Figure 6). 

 

Figure 4 - Data representations of missense mutations using the CCBE1 gene as an 

example in the dbSNP database on the NCBI portal 

https://www.ncbi.nlm.nih.gov/snp/
https://www.ensembl.org/index.html
http://expasy.org./
https://www.omim.org/
https://www.hgmd.cf.ac.uk/
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Figure 5 - Data sources and paths of data usage in the dbSNP (non-synonymous 

single nucleotide polymorphisms) database of the National Center for 

Biotechnology Information (NCBI, USA) 

 

Figure 6 - Ensemble database example for searching information on the CCBE1 

gene 

Other databases were similarly utilized. For cross-checking of non-

synonymous single nucleotide polymorphism (nsSNP) data, information was 

searched in the Exome Aggregation Consortium (ExAC), Genome Variation Server, 

Functional Single Nucleotide Polymorphism (F-SNP), Human Gene Mutation 

Database (HGMD), which compiles known gene mutations responsible for inherited 

human diseases. Similarly, the Genetic Association Database (GAD), which 

contains an archive of more than 3600 dbSNP records, and the Human/Genome 
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Variation Database (HGVBase), which reports associations with diseases based on 

published clinical studies, were used, although very few of these statistical 

associations have been confirmed. 

The Online Mendelian Inheritance in Man (OMIM) database used in this 

study is a catalog of genetic disorders of inherited diseases, associated with human 

genes not only highly penetrant but also rare (MAF - minor allele frequency of less 

than 0.01 in the population). 

We collected data on non-synonymous SNPs from these portals, associated 

with the studied genes FAT4, ADMATS3, CCBEI, ELANE, and TCIRG1; data 

related to other factors were excluded. The number of SNPs for the listed genes is 

displayed in Table 1.  

Table 1 - SNPs loaded from the dbSNP and Ensemble databases 

Genes SNP nsSNP 

ELANE 3646 301 

TCIRG1 5627 811 

CCBE1 73845 407 

FAT4 68257 3434 

ADAMTS3 70876 911 

 

2.2 - Methods used in the work 

2.2.1 - Differential gene expression analysis from data from patients with 

HOIL-1/RBCK1 deficiency and patients with congenital neutropenia 

Differential gene expression analysis (DEG) is a process used to identify 

genes differentially expressed between two or more conditions, such as normal and 

disease or conditions under different treatments. This analysis can be performed 

using bioinformatics tools and pipelines [222]. 

The DEG analysis procedure involves several steps, including quality control 

of raw sequencing data, mapping reads to a reference genome or transcriptome, 
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quantification of gene expression levels, data normalization, statistical analysis to 

identify differentially expressed genes, and functional analysis of identified genes. 

A standard differential gene expression method was used to determine the 

differences in gene expression in the data set for the RBCK1 deficiency study. The 

analysis was performed using the Bolstad R package. Differences in gene expression 

between patients with RBCK1 deficiency and normal samples were evaluated as 

significant with a P-value < 0.05, |logFC| > 1, and a false discovery rate (FDR) p-

value of 0.57 was used as a threshold value [28]. 

False discovery rate (FDR) determination is a method for conceptualizing the 

first-order error rate when testing null hypotheses in multiple comparisons. The 

Log2-value is a cutoff value important for calculating the difference between 

expression levels.  

The false discovery rate method is one of the main statistical tools when 

annotating genes using GO. 

GO is a standardized vocabulary of terms that are used to describe the 

functions of genes, cellular components, and biological processes in various 

organisms. Each gene can be annotated to one or more GO terms, which can be used 

to infer gene function and to compare the functions of different genes [71]. 

Gene expression differences were calculated using the R Limma package. 

Functional enrichment analysis of genes characteristic of various congenital primary 

immunodeficiencies and autoinflammatory diseases was performed using the R 

Bioconductor package. 

Gene Set Enrichment Analysis (GSEA) is a set of methods to link a set of 

genes to a change in phenotype [225]. Such methods often use databases of 

previously annotated gene sets to formalize existing phenotype data (e.g., Gene 

Ontology Project (GO) terms: molecular functions, biological processes, or cellular 

components [134]. The result of the method (program release) in this case is a set of 

preannotated sets that help determine whether the ordered list of genes depends on 

the phenotype or whether they are simply random [225]. Such preannotated sets are 
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called overrepresented (if the frequency is higher than the background) or 

underrepresented (if the frequency is lower than the background).  

Enrichment coefficient (ES) is a statistical coefficient determined by the 

Kolmogorov-Smirnov method, reflecting the degree of overrepresentation of genes 

at the top or bottom of the ranked list of genes.  

Over-enrichment analysis (ORA) and Gene Ontology (Gene Ontology) and 

the signaling pathways involved were performed using the analysis of the borrowed 

signaling pathways in the KEGG, WikiPathways, reactome, and DAVID databases. 

Subsequently, DAVID was used to perform analysis in the KEGG database and gene 

annotation (GO) [71, 109, 200]. The major genes were selected according to their 

level of connectivity and depicted using Metaphase software [221]. 

2.2.2 - Prediction of candidate genes for congenital neutropenia 

To predict candidate genes for congenital neutropenia, we took the following 

steps. 

First, we used the STRING database to obtain protein-protein interaction 

(PPI) data for PID and congenital neutropenia genes. The data include genomic 

context, co-expression, and known and predicted interactions from previous data. 

The minimum required interaction value was set at 0.4 [192].  

Cytoscape (version 3.5.1) was used to estimate gene network density 

(Dnetwork) and biological distance for congenital neutropenia genes and other 

primary immunodeficiency genes [58]. Density (Dnetwork) is the most widely used 

concept in gene regulation and the study of networks of protein-protein interactions 

(PPIs) and can be used to determine whether a network is dense or not. Network 

density (Dnetwork) is determined by the formula [88]. 

 

(1) 
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where aij is pairwise adjacency, ∑ represents connectivity (network 

connectivity equals unweighted network connectivity equal to the number of genes 

that directly the i-th gene), and n is the number of genes in the network. 

Note that aij = 1 if gene i and gene j interact in the STRING database, whereas 

aij = 0 otherwise.  

Congenital neutropenia PPI group data (based on the published 32 congenital 

neutropenia genes) and ten random groups (each group consists of 41 PID genes) 

were respectively converted into a symmetric adjacency matrix (aij, i, j = 1, n) 

using the "igraph" R package [55].  

The network density was used to compare their functional cohesion and 

proximity. The higher the network density in a group, the closer the interaction of 

genes in the group. The concept of biological distance (Bi,j) was first introduced by 

Ethan J. et al. in 2013. With biological distance, researchers studying the functional 

relationships of genes in a network of genomic interactions do not mean the actual 

distance between genes in a DNA molecule or on a chromosome, but rather the 

functional proximity between pairs of genes or within a group of genes [201].  

Using the value of biological distance, Itan Y. et al. showed that primary 

immunodeficiency genes are usually located in the center of the human genomic 

network and form several closely related subgroups according to different biological 

mechanisms [107,201]. Biological distance (Bi,j) is determined by the formula: 

 
where Si,j is the combined index between gene i and gene j obtained from the 

STRING database, and C is the number of direct connections between gene i and the 

desired gene. The smaller the biological distance between the groups, the closer the 

biological relationship between the genes in the group.  

The biological distance of a group of known congenital neutropenia genes (32 

genes) and two random groups of PID genes (each group consisted of 41 PID genes) 

(2) 
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was calculated using the Python package for Human Gene Conectome (HGC), 

provided by Y. Itan et al., 2015 [107]. 

Using the "igraph" R package, congenital neutropenia group PPI data and 10 

random groups (each with 41 PID genes) were transformed into a symmetric 

adjacency matrix (aij, I j = 1, n) [55].  Network cohesion or density was determined 

using network density analysis (a higher network density represents a closer 

interaction of genes in the group).  

 Further, the biological distance between genes (Bij) was estimated, 

which can be used to calculate the shortest functional distances between all possible 

pairs of human genes [201].  

The calculation of the biological distance between the congenital neutropenia 

gene group (31 genes) and two random PID groups (41 PID genes in each) was 

performed using the Human Gene Connectome (HGC) tool in Python [201]. 

The direct search for candidate genes after the preparatory steps was 

performed in three ways. 

1) A Pearson correlation analysis (PCC) was performed to assess the 

expression of 31 congenital neutropenia genes and each protein-coding gene (or 

candidate gene) based on data sets GSE142347 and GSE6322 (Downloaded from 

NCBI using GEO transcriptomic profiles of congenital neutropenia patients). |r|>0.9 

and p<0.05 were used. 

2) PPI data for all human protein-coding genes were obtained from J. Cheng 

et al, 2006 [40], including 217160 interactions provided by eleven databases such as 

BioGRID [29], HI-II-14_Net [19], HPRD [91], Instruct [101], InnateDB [100], 

IntAct [102], MINT [205], PINA [160], SignaLink2.0 [191], KinomeNetworkX 

[172] and PhosphositePlus [118]. The candidate gene was then conserved if the 

interaction between the congenital neutropenia gene and the candidate gene from the 

previous step was found in the PPI data.  

3) Kyoto Gene and Genome Encyclopedia (KEGG) analysis was performed 

using the R package "clusterProfiler" to evaluate the biological function enrichment 

of congenital neutropenia genes [217]. KEGG analysis was then performed for the 
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remaining candidate genes for congenital neutropenia. A gene was defined as a true 

congenital neutropenia candidate gene if it was enriched in the same pathway as the 

congenital neutropenia gene. 

To determine whether our method is suitable for predicting congenital 

neutropenia candidate genes, we calculated the biological distances (Bi, j) of the 

predicted candidate genes and compared them with 32 known congenital 

neutropenia genes. A "functional genomic alignment" (FGA) and phylogenetic 

cluster analysis were then performed. These steps were performed using the APE 

package available in R to assess the biological correlation between candidate genes 

and known genes [152, 201]. Specifically, we first created a biological distance 

matrix between congenital neutropenia genes and congenital neutropenia candidate 

genes, and then applied a neighbor-joining algorithm (function nj) to create a 

phylogenetic fan tree showing a hierarchical clustering of known and congenital 

neutropenia candidate genes. If the candidate genes were evenly distributed 

throughout the range of known congenital neutropenia genes, this meant that these 

candidate genes were closely related to the known genes. If the candidate genes and 

known genes were separated into two or more groups, it meant the opposite. 

Using the R package "limma," we searched for genes with differences in 

expression between patients with congenital neutropenia HC and healthy controls 

and showed a |log 2|-fold change. Values were taken as cutoff (Threshold) > 0.4 and 

P-value <0.05 [120]. Data overlap between information on differentially expressed 

genes obtained from analysis of the GSE142347 and GSE6322 datasets was 

determined using a Venn diagram in the R package [39]. 

2.2.3 - Sequence evaluation of nonsynonymous single nucleotide 

substitutions (missense-SNP) of CCBE1, FAT4, ADAMTS3, TCIRG1, ELANE 

genes and prediction of pathogenicity of substitutions 

We used various in silico tools to test the functional evaluation of the listed 

immune sietm genes with nsSNPs of pathological or benign nature. We used the 

following tools: SIFT [145], POLYPHEN-2 [70] PROVEAN [42], FATHMM [69], 
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LRT [215], M-CAP [125], VEST3 [59], CAAD [52], MetaLR [176], Mutation 

Assessor [105], MutationTaster [135, 141], and FATHMM-MKL [22], SNP&GO, 

PhD-SNP [77], PANTHER [150], SNAP2 [82]. All of these tools were available 

through VarCard [212] and MutPred [99]. 

SIFT (Sorting Intolerant From Tolerant) is a bioinformatics algorithm used to 

predict the possible effect of amino acid substitutions on protein function. The 

algorithm works by comparing an amino acid at a given position in a protein 

sequence with a set of related protein sequences and estimating how much of the 

amino acid is conserved in different species. 

The SIFT algorithm calculates a score for each amino acid substitution 

ranging from 0 to 1. A score of 0 means that the substitution is highly likely to be 

harmful, while a score of 1 means that the substitution is likely benign. To sort gene 

variants into pathological and benign, the threshold value in SIFT was set at >0.5 

(Figure 7).  

 

Figure 7 - An example of presenting the results of SNP pathogenicity analysis in 

SIFT 

PolyPhen-2 (Polymorphism Phenotyping v2) is a bioinformatics tool used to 

predict the possible functional impact of an amino acid substitution in a protein. The 

algorithm analyzes the amino acid sequence of the protein, the position of the 

variant, and the properties of the amino acids involved in the substitution to predict 

whether the substitution will be damaging or benign. 
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PolyPhen-2 uses a combination of evolutionary conservation and structural 

information to make predictions. First, the algorithm aligns the amino acid sequence 

of the protein with those of other related species to determine which amino acids are 

highly conserved and therefore may be functionally important. The algorithm then 

uses a number of structural characteristics, including solvent availability and the 

presence of hydrogen bonds, to predict the effect of amino acid substitution on 

protein structure and function. 

The output of PolyPhen-2 is a prediction of the functional impact of the amino 

acid substitution, which is expressed as a score from 0 to 1. Variants with a score of 

more than 0.5 are considered harmful, and variants with a score of less than 0.5 are 

considered benign. PolyPhen-2 has shown high accuracy in predicting the effect of 

amino acid substitutions, which makes it a useful tool for researchers studying the 

effects of genetic variations on protein function [70, 92] (Figure 8). 

 

Figure 8 - Example of a presentation of the results of SNP pathogenicity analysis 

in PolyPhen-2 

VarCards is a bioinformatics tool used to analyze genetic variants and predict 

their potential impact on human health. It combines data from a variety of sources, 

including public databases, the literature, and experimental data, to provide 
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comprehensive information about genetic variants and their potential clinical 

significance. 

The VarCards algorithm works in several steps: 

1) Collecting variant data: First, the algorithm collects information about 

genetic variants from various sources, including public databases such as dbSNP and 

ClinVar, as well as literature and experimental data. 

2) Variant annotation: The algorithm annotates variants with information 

about their genomic location, functional impact and frequency in the population. 

This information is taken from various sources, including Ensembl, dbNSFP, and 

ExAC. 

3) Prediction of pathogenicity: The algorithm uses various computational 

tools, such as SIFT and PolyPhen-2, to predict the potential effect of each variant on 

protein function and estimate its effect on changes in protein function. 

4) Association with diseases: The algorithm also integrates information about 

the association of each variant with human diseases from various sources, including 

the Human Gene Mutation Database (HGMD), ClinVar, and PubMed. 

5) Clinical interpretation: Finally, the algorithm provides clinical 

interpretation of each variant, including its potential pathogenicity, association with 

diseases and relevance to specific clinical conditions. 

VarCards provides a user-friendly interface for querying and analyzing 

genetic variants, as well as a customizable pipeline for integrating additional data 

sources and analysis tools. It is widely used in clinical and research settings to 

analyze genetic variants and identify potential disease-causing mutations. 

We have used VarCARD for the results of tools such as: LRT, Mutation 

Taster, Mutation Accessor, PROVEAN, FATHMM, VEST3, MTA SVM, 

METALR, M-CAP, CADD, DANN, FATHMM-MKK, PhD-SNP, PANTHER, 

SNP-GO, P-MUT [212] (Figure 9). 

The threshold values for the aforementioned tools were as follows: Mutation 

Taster: <0.5; CADD: >15; MetaLR: >0.5; M-Cap: >0.025; PANTHER: probably 

damaging at time > 450my, possibly damaging (less likely) at 450my > time > 
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200my, likely benign at time < 200my; VEST3: >0.5; LRT: >0.001; PROVEAN: >-

2.667; FATHMM-MKK: <0.5; PhDSNP: >0.5; SNP-GO: >0.5; SNAP2: scale from 

-100 (completely neutral) to +100 (strong effect); DANN: >0.5; Mutation Assessor: 

>0.65 (from -5.545 to 5.975, with higher values indicating greater damaging effects); 

FATHMM: >0.453; PON-P2: >0.5. 

 

Figure 9 - An example of presenting the results of SNP pathogenicity analysis in 

VarCards 

The online tool MutPred (http://mutpred.mutdb.org/) is used as a search tool 

for predicting the molecular basis of disease associated with amino acid substitution 

in a mutant protein. It employs several attributes related to the structure, function, 

and evolution of the protein. MutPred uses three other services - PSI-BLAST, SIFT, 

and Pfam - as well as algorithms TMHMM, MARCOIL, and DisProt. This allows 

for the prediction of most structural damage and achieves even greater prediction 

accuracy by combining the ratings of all three services [99]. 

2.2.4 - Assessment of nsSNP effects of CCBE1, FAT4, ADAMTS3, 

TCIRG1, ELANE genes using in silico tools on protein structure and function 

The Mupro method uses support vector machine learning to predict protein 

stability changes in single-amino acid mutations using both sequence and structural 

information, as does the IMutant 3.0 method.  

http://mutpred.mutdb.org/
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iMutant 3.0 is a web server that predicts the effect of single point mutations 

on protein stability and produces an estimate indicating the probability of 

destabilizing or stabilizing the mutation. The algorithm is based on a support vector 

method (SVM) trained on a large data set of experimentally characterized mutants 

to predict the effect of a mutation on protein stability. The SVM model is trained to 

distinguish between stabilizing and destabilizing mutations based on the extracted 

features. 

iMutant 3.0 has shown high accuracy in predicting the effect of single-point 

mutations on protein stability, making it a useful tool for researchers studying the 

effects of genetic variations on protein function. The algorithm can be used for a 

wide range of applications, including the construction of stable and functional 

proteins and the detection of disease-causing mutations. 

Some methods use sequence conservation of certain amino acids in a sequence 

family or look for certain features of the protein structure to predict whether the 

substitution affects the function of the protein. Amino acid substitutions caused by 

nsSNPs can alter the stability of the native protein, which can lead to effects on the 

protein and ultimately to disease [40]. 

Using the met classifier, iStable 2.0, we predicted changes caused by nsSNP 

missense substitutions on protein stability. The met classifier uses machine learning 

and investigates whether protein stability increases or decreases. This is due to 

amino acid substitution, which is based on the prediction of 8 structural (I-Mutant 

3.0, CUPSAT, PoPMuSiC, AUTO-MUTE2.0, SDM, DUET, mCSM, MAESTRO 

and SDM2) and 3 sequential (I-Mu-tant2.0, MUpro and iPTREESTAB) protein 

stability prediction tools. A 4-letter PDB code or FASTA-formatted protein 

sequence is used as input, but the structural predictor achieves better performance 

than the sequential one. The iStable 2.0 can be found on the Web server at 

http://ncblab.nchu.edu.tw/iStable2. [106]. I-Mutant 3.0 

https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi). 

The ΔΔG Mut dataset from Pro Therm was used to pre-train the algorithm. 

The value of ΔΔG (kcal/mol) can be used to identify a single-site mutation that 

https://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
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depends on the structure or sequence of the protein. A ΔΔG value less than zero 

indicates that the variant changes the structure or sequence of the protein [35]. 

Project HOPE was used in the ELANE study to assess the structural 

consequences of the substitution sought. Project HOPE is a web server 

(https://www.projecthope.org/) that proposes to estimate the altered protein in the 

observed 3D structure in interaction with UniProt and the 3DAS prediction 

algorithm. The protein sequence is used as an input source in Project HOPE and then 

a structural comparison is made with the wild type. 

In addition, the secondary structure of the ELANE protein was evaluated 

using the SOPMA program [74]. This is a more sophisticated version of the self-

optimized prediction method (SOPM), which can predict the secondary structure 

(helix, turn and twist) of 69.5% of amino acids in a database of 126 non-homologous 

(less than 25% homologous) protein chains. SOPMA and the neural network 

approach (PhD) correctly predict 82.2% of residues and 74% of amino acids 

predicted when used together. 

2.2.5 - Assessment of the effect of nsSNPs on posttranslational 

modification of immune system proteins 

The effect of amino acid substitutions at sites affecting posttranslational 

modification of a protein was assessed to predict changes in its structure and function 

[4, 143]. Software available online, GPSMSP v3.0 (https://msp. 

biocuckoo.org/online.php) was used to predict methylation sites.  

We used NetPhos 3.177 (https://www.cbs.dtu.dk/services/NetPhos/) [156] 

and GPS 5.078 (https://gps.biocuckoo.cn/) [76] to predict potential phosphorylation 

sites. The NetPhos 3.1 service predicts serine, threonine, and tyrosine 

phosphorylation sites in proteins using ensembles of neural networks. 

Phosphorylation sites with a score greater than 0.5 are more likely to be 

phosphorylated [31]. 

We used GPSMSP 1.0 (https://msp.biocuckoo.org/), BDMPUB 

(https://www.bdmpub.biocuckoo.org), and UbPred [93] (https://www.ubpred.org) 
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to evaluate potential methylation and ubiquitination sites. NetOglyc4.0 additionally 

predicts glycosylation sites using glycosylation [162] 

(https://www.cbs.dtu.dk/services/ NetOGlyc/). Glycosylation sites with a score 

greater than 0.5 are more likely to be glycosylated. 

2.2.6 - Assessment of the effect of nsSNPs on functionally different regions 

of immune system proteins 

Conservation analysis is a bioinformatics method used to identify functionally 

important regions in protein structures by analyzing evolutionary conservation in 

related protein sequences. The method is based on the principle that evolutionarily 

conserved regions in protein structures are likely to be functionally important, while 

variant regions are likely to be less important for protein function. A neural network 

algorithm and corresponding web service Consurf [53] were used for conservation 

analysis. 

The algorithm converts the estimated rate of evolution into a conservation 

score relative to other related protein sequences, which typically ranges from 1 (high 

variability) to 9 (high conservation). Conservation scores are then plotted on the 

protein structure to identify conserved and variant regions. This can be visualized 

using various tools such as PyMOL or Chimera. 

Conservation analysis can be used to identify functionally important regions 

in protein structures such as active sites, binding sites, and structural domains. It can 

also be used to study the evolution of protein function and to design experiments to 

verify the functional importance of certain regions in the protein structure. 

Based on the location and functional importance of different regions of the 

protein, the amino acid sites in a protein can be divided into several categories, 

including functional, open, buried, and structural residues. 

Functional residues are amino acids that contribute directly to the function of 

the protein, such as active sites, binding sites, or catalytic residues. Functional 

residues tend to be highly conserved in related proteins and are often located on the 

surface of the protein where they can interact with other molecules. 
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Open residues are amino acids that are located on the surface of the protein 

and are accessible to the environment. Open residues can play a role in protein-

protein interactions, ligand binding, and other functions requiring interaction with 

the external environment. 

Buried residues are amino acids that are located in the interior of the protein 

and are inaccessible to the environment. Buried residues play an important role in 

maintaining the overall structure and stability of the protein because they participate 

in the formation of the protein core. 

Structural residues are amino acids that are not directly involved in the 

functioning of the protein, but are important for maintaining its structure and 

stability. Structural residues include those that form the secondary structure of the 

protein, such as alpha-helices and beta-sheets, and those that contribute to the overall 

stability of the protein, such as disulfide bonds. 

Classification of amino acids according to these categories can provide insight 

into the structure and function of the protein, as well as its evolutionary history and 

potential for engineering or modification. 

2.2.7 - Construction of a 3D model of the structure of immune system 

proteins to identify the influence of amino acid substitutions 

The data source to obtain the wild-type (original) protein sequence was the 

UniProt database (Universal Protein Resource, https://www.uniprot.org/), an online 

database of protein sequences and functional information about proteins that is freely 

available. UniProt is a centralized repository of protein sequences, annotations, and 

other related information that comes from various databases [171]. 

Prediction of three-dimensional protein models in order to further compare 

three-dimensional models of wild (original) types and mutant (altered) types of 

proteins was performed by their 3D modeling (in Phyre2, I-Tasser, HHpred and 

AlphaFold2 programs), structure overlay, comparison and further by molecular 

dynamics simulation (MDS). These programs resulted in .pdb files containing the 

coordinates of atoms in 3D space [154]. 
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At the same time, the programs HHpred and AlphaFold2 allow MDS without 

the use of third-party applications from Schrodinger, which will be discussed below, 

and allow to estimate the standard deviation (RMSD) of the distances between the 

carbon bases of natural and mutant models over time. 

The HHPred (Homology Detection and Structure Prediction by Hidden 

Markov Model Comparison) application is a bioinformatics tool that uses a Hidden 

Markov Model (HMM) profile comparison to identify homologous sequences and 

predict protein structure. The HHPred algorithm compares the target sequence with 

a database of HMMs derived from protein families in the Pfam database to identify 

homologous sequences and predict protein structure. 

HHPred is a widely used tool for protein structure prediction and is highly 

accurate and successful in identifying homologous sequences and in predicting 

protein structure. It is particularly informative for the study of proteins that do not 

have significant sequence similarity with proteins with known structures. HHPred is 

freely available as a web server and can be used to predict the structure and function 

of a wide range of proteins. 

AlphaFold 2 is a deep neural network-based protein structure prediction 

software developed by DeepMind's artificial intelligence research group. AlphaFold 

2 uses deep learning techniques to predict the 3D structure of proteins with high 

accuracy, reaching, in some cases, accuracy close to the atomic level. The software 

has been used by Jumper J. et al., 2021, to predict the structure of many proteins, 

including those involved in diseases such as COVID-19, and has the potential to 

accelerate drug discovery and protein development. AlphaFold 2 was released as an 

open-source tool, making it freely available to researchers worldwide [85].  

Phyre2 is a set of tools available online to predict and analyze protein 

structure, function, and mutations. The main goal of Phyre2 is to provide biologists 

with a simple and intuitive interface to state-of-the-art protein bioinformatics tools 

[207].  

I-Tasser, the Iterative Thread Assembly Refinement Server, is an integrated 

platform for automated prediction of protein structure and function based on the 
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sequence-structure-function paradigm. Starting from the amino acid sequence, I-

TASSER first generates three-dimensional (3D) atomic models based on multi-

threaded alignment and iterative structural assembly modeling. Protein function is 

determined by structurally comparing the 3D models to other known proteins. The 

result of a typical server contains predictions of the full-length secondary and tertiary 

structure as well as functional annotations on ligand binding sites, enzyme 

commission numbers and Gene Ontology terms. An estimate of the accuracy of the 

predictions is provided based on the confidence score of the simulation. This 

protocol provides new insights and guidelines for the design of server systems for 

state-of-the-art predictions of protein structure and function. The server is available 

at http://zhanglab.ccmb.med.umich.edu/I-TASSER [182]. 

The resulting .pdb files were visualized in PyMOL, Chimera, and the online 

service Discovert Studio. 

Chimera UCSF is a program for interactive visualization and analysis of 

molecular structures and related data, including density maps, trajectories, and 

sequence alignments [210]. PyMOL is a cross-platform molecular graphics tool and 

is widely used for 3D visualization of macromolecules.  

The capabilities of PyMOL have been greatly extended by various plug-ins, 

including macromolecular analysis, homology modeling, protein-ligand docking, 

pharmacophore modeling, VS and MD modeling. We used the programming 

languages R and Python to access these programs. 

Discovert Studio (https://discover.3ds.com/) is a program for molecular 

modeling and various ways of 3D visualization of the resulting models. 

In the study of ELANE proteins, calculation of differences between models 

of wild-type and mutant versions of the proteins after creating models in Phyre2 and 

I-Tasser was performed using Zhanggroup online service 

(https://zhanggroup.org/TM-score/, University of Michigan Medical School, USA). 

Validation of 3D models was performed using PROCHECK and the 

Ramachandran plot service. 
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PROCHECK is a program used to validate the three-dimensional structures 

of proteins. It was developed by Roman Laskowski at the European Bioinformatics 

Institute (EBI) and is now widely used in structural biology. 

PROCHECK analyzes protein structures in terms of their geometry, including 

bond lengths, bond angles and torsion angles, and compares them with ideal values 

for well-functioning structures. The program generates a series of graphical results 

that summarize the quality of the structure and highlight any areas that may be 

problematic [170]. 

Ramachandran plots serve as an indirect tool to check the stereochemistry and 

geometry of the complex by establishing that none of the geometries are in the 

forbidden electrostatically unfavorable regions of the plot [170, 173]. This online 

service applying this method was used in the work: 

https://swift.cmbi.umcn.nl/servers/html/ramaplot.html (Netherlands). 

A similar method that complements the simulation results is MolProbity. It is 

a web-based all-atom structure validation application for macromolecular 

crystallography that integrates validation programs from the Richardson lab at Duke 

University designed to assess the quality of three-dimensional protein structures. 

One of the main features of MolProbity is the Ramachandran graph analysis, 

which examines the torsion angles of the main chain of the protein structure and 

compares them to the expected values for a properly coiled protein. The program 

also assesses the quality of the protein geometry, including bond lengths, angles and 

non-bonding interactions, and identifies potential collisions or steric overlaps. In 

addition, MolProbity includes tools to assess the consistency of a protein's structure 

with experimental data, such as electron density maps or nuclear magnetic resonance 

data. The program also provides recommendations for optimizing the hydrogen bond 

network in the protein structure and identifying potential errors in the placement of 

ligands or other non-protein molecules. 

In a simulated protein molecule, MolProbity identifies a favorable region, a 

resolved region, and an outlier region, which correspond to different regions on the 



70 
 

Ramachandran graph, which is a graphical representation of the torsion angles of the 

main part of the protein structure. 

The favorable region corresponds to the area of the diagram where most high-

quality protein structures are located. In this region, the torsion angles of the main 

part are close to the ideal values for a well coiled protein, indicating a well-

functioning and stable structure. 

The tolerable region is adjacent to the favorable region and represents an area 

in which the base torsion angles are slightly less than ideal, but still acceptable. 

Protein structures with torsional angles within this region are considered to be of 

sufficient quality, although they may have some minor structural problems. 

The outlier region is the area of the graph where the torsion angles of the main 

part differ significantly from the ideal values, indicating a potentially unstable or 

poorly folded protein structure. Protein structures with torsions in this region are 

considered low quality and may require significant structural refinement or 

correction. 

Comparison of 3D models of wild-type and mutant variants of proteins was 

performed taking into account the model comparison metric (TM-score). 

TM-score (Template Modeling score) is a widely used metric for comparing 

structural similarity between two protein structures. It is a measure of structural 

similarity between two protein structures, taking into account both the standard 

deviation (RMSD) of aligned residues and the length of the aligned region. 

TM-score ranges from 0 to 1, with higher values indicating greater structural 

similarity between the two proteins. A TM-score score of 1 indicates complete 

structural similarity between the two proteins, while a TM-score score of 0 indicates 

no structural similarity. 

2.2.8 - Docking methods to study the effect of substitutions on the function 

of immune system proteins analyzed 

Protein docking analysis is the simulation of molecular interactions between 

two proteins to determine which specific atoms of one protein bind to atoms of the 
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other protein in three dimensions. This analysis can help understand how two 

proteins can bind and which specific atoms are involved in this process. 

The Discovery Studio and PyMol programs described earlier were used for 

this purpose. Interactions between atoms at specific amino acid residues were 

calculated to identify binding forces that were crucial in stabilizing the formation of 

receptor-ligand complexes. 

In addition, AutoDock (Scripps Research Institute) was used in the study of 

the ELANE protein. AutoDock is designed to perform both rigid and flexible 

docking simulations. In rigid docking, the protein remains stationary and only the 

ligand can move during the simulation. In flexible docking, both the protein and 

ligand can move during the simulation. This flexibility allows AutoDock to simulate 

conformational changes in the protein that may occur during ligand binding [24]. 

2.2.9 - Molecular dynamics simulation to assess the pathogenicity of 

newly identified nsSNPs 

Molecular dynamics simulation (MDS) is a computer simulation technique 

for analyzing the physical motion of atoms and molecules. Atoms and molecules are 

allowed to interact for a fixed period of time, giving insight into the dynamic 

"evolution" of the system. In the most common version, the trajectories of atoms and 

molecules are determined by numerically solving Newton's equations of motion for 

a system of interacting particles, with the forces between particles and their potential 

energies often calculated using the interatomic potentials or force fields of molecular 

mechanics. 

A particularly important application of molecular dynamics simulation is to 

determine how a biomolecular system will respond to some perturbation. In each of 

these cases, it is usually necessary to run several simulations of both the perturbed 

and unperturbed system in order to identify consistent differences in the results.  

Molecular dynamics simulations were performed using the packages Maestro 

and Gromacs 4.5.3 from Schrödingern LLC [78].  
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Maestro creates the preparation for the simulation, in particular, it adds 

hydrogen atoms to the virtual environment, assigns hydrogen bonds, and minimizes 

the energies of the molecule. In addition, a "dissolution" of the molecule is 

performed. 

Wild-type and mutant proteins were pretreated using Protein Preparation 

Wizard in Maestro, which included optimization and complex minimization. A tool 

available in the Maestro software package that is designed to preprocess protein 

structures before performing molecular dynamics simulations. It automatically 

optimizes the geometry of the protein structure, adds hydrogenic atoms, corrects 

missing or incorrect atoms, removes water and ligands, creates an extended vacuum 

layer around the protein, and more. All of these steps help eliminate possible 

problems with the protein structure and prepare it for molecular dynamic 

simulations. All systems were prepared using the System Builder tool. TIP3P, a 

solvent model with an orthorhombic cell, was chosen. (Transferable Intermolecular 

Interaction Potential 3 Points). The OPLS 2005 force field [196] was used in the 

simulations. To make the models neutral, counter ions were introduced. To simulate 

physiological conditions, 0.15 M sodium chloride (NaCl) was added. An NPT 

ensemble with a temperature of 300 K and a pressure of 1 atm was chosen for the 

entire simulation. The models were "relaxed" prior to simulation. The trajectories 

were stored for study every 100 ps, and the stability of the simulations was checked 

by comparing the standard deviation mean square (RMSD) of the protein and ligand 

over time. 

Gromacs produces the following simulation results: 

1. Root Mean Square Deviation (RMSD) - a measure of structural 

deviation over time compared to the structure at T=0 ns. RMSD is calculated by 

measuring the average distance between atoms of two protein structures after 

aligning them with each other. Alignment is usually performed by comparing the 

positions of atoms in the backbone of the two structures. The value of RMSD reflects 

the degree of deviation between the two structures, with smaller RMSD values 

indicating greater similarity or coincidence. 
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2. Root Mean Square Fluctuation (RMSF) - the mean square fluctuation 

is a measure of the degree of mobility or flexibility of each atom or residue in the 

protein structure. RMSF is calculated by taking the root mean square deviation of 

each atom or residue in the protein structure from its mean position during a given 

simulation or trajectory. The obtained RMSF values are a measure of the variability 

or fluctuation of the position of each atom or residue, which can indicate the degree 

of its mobility or flexibility. 

3. Differences in the secondary structure of the protein. 

4. Radius of gyration (Rg) - a measure of the "expansion" of the protein. 

The radius of gyration is calculated as the root mean square distance of all atoms in 

the protein from the center of mass of the protein. Thus, an assessment is made of 

the overall shape and compactness of the protein. Rg is influenced by various factors, 

such as the size, shape, and flexibility of the protein. For example, a more compact 

protein will have a smaller Rg value, while a more elongated or flexible protein will 

have a larger Rg value. The Rg value can be used to monitor the stability and folding 

of the protein over time during molecular dynamics simulations. 

5. The number of hydrogen bonds formed between different groups of 

atoms during molecular dynamics simulation. The most commonly used tool for 

calculating hydrogen bonds in GROMACS is the "g_hbond" command, which 

identifies hydrogen bonds between donor and acceptor groups of atoms based on 

geometric criteria. In particular, the tool calculates distance and angle criteria for 

each potential hydrogen bond and reports the number of hydrogen bonds that satisfy 

these criteria. 

6. The Solvent Accessible Surface Area (SASA) is a measure of the 

surface area of a protein or other biomolecule that is accessible to the surrounding 

solvent. It is commonly used in molecular dynamics simulations to analyze the 

conformational properties of proteins and their interactions with solvents. In 

GROMACS, SASA is calculated as the surface area of the protein or other 

biomolecule that is accessible to a probe sphere with a specified radius, typically a 

water molecule. The calculation involves dividing the surface of the biomolecule 
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into a grid of small triangles or squares and computing the area of each grid element 

that is accessible to the solvent. 

7. Principal Component Analysis (PCA) is a statistical method used in 

molecular dynamics simulations to analyze the motion and conformational changes 

of proteins and other biomolecules. PCA analysis is performed on trajectory files 

obtained during molecular dynamics simulations. The first step in PCA analysis 

involves constructing a covariance matrix from the atomic coordinates of the protein 

or other biomolecule at each time step of the simulation. The covariance matrix is 

then diagonalized to obtain a set of eigenvectors and eigenvalues that describe the 

collective motions of the system. The results of PCA analysis can be used to 

determine the most important collective motions of the protein or other biomolecule, 

such as domain movements, loop bending or loop fluctuations. These motions can 

provide insight into the functional properties of the protein, such as enzyme 

catalysis, ligand binding or protein-protein interactions. 

8. The Free Energy Landscape is a graphical representation of the free 

energy of a system as a function of one or more collective variables, which are 

typically chosen to describe important degrees of freedom of the system. It is a 

powerful tool used in molecular dynamics simulations to study the thermodynamics 

and kinetics of complex systems, such as protein folding, ligand binding, or 

conformational changes. In GROMACS, free energy landscapes are often 

constructed using the umbrella sampling method, which involves applying an 

external biasing potential to constrain the system along the chosen collective 

variable. Several simulations are then performed, each with a different value of the 

biasing potential, to sample the entire range of the chosen collective variable. 

The free energy of a system as a function of a chosen collective variable can 

be obtained from the probability distribution of the collective variable, which is 

estimated from data obtained from umbrella sampling simulations. This probability 

distribution can be further analyzed using methods such as weighted histogram 

analysis (WHAM) to obtain a landscape of free energy. The free energy landscape 

can provide valuable information about the thermodynamics and kinetics of the 
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system under investigation. For example, it can show stable and metastable states of 

the system, barriers for conformational changes or ligand binding, as well as protein 

folding or aggregation mechanisms. 

The structure of the native and mutant Aurora-A kinase was used as a starting 

point for the simulation of molecular dynamics in Maestro. Simulation parameters 

were set according to our previous work performed for the Aurora-A protein and 

other proteins. The systems were solvated (dissolved) in a rectangular box with 

TIP3P water molecules with an edge radius of 10 Å. The systems were neutralized 

by adding 3 sodium ions (Na+) to the simulation field using the "genion" tool that 

accompanies the Gromacs package. Energy minimization was performed over 5000 

iterations using the conjugate gradient method using the GROMOS96 43a1 force 

field. The Emtol convergence criterion, which serves as a measure of the stability of 

the molecular dynamics, was set to 1000 kJ/mol/nm. The Berendsen temperature 

coupling method was applied to regulate the temperature inside the simulation box. 

This method ensures that the system temperature remains constant during the 

simulation by adjusting the temperature of the box based on the instantaneous 

temperature of the system. 

Electrostatic interactions were calculated using the Ewald method with a 

particle grid. The systems were simulated with position constraint for 5 ns and then 

simulated without constraint for 200 ns. A comparative analysis of structural 

deviations in the native and mutant structure was then performed. RMSD, RMSF, 

SAS, and Rg were analyzed using the tools g_rms, g_rmsf, g_sas, and g_gyrate, 

respectively. The number of individual hydrogen bonds (NHbonds) was calculated 

using g_hbond.  

In addition, we used g_densmap to obtain the atomic density distribution of 

the native and mutant protein. All graphs were plotted using the Grace GUI toolbox 

version 5.1.22. Next, we performed principal component analysis using the Essential 

Dynamics (ED) method according to the protocol in the Gromacs software package. 

This section is an abbreviated version of our previously published work. 
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We used 100 nanoseconds, Desmond, software from Schrödingern LLC, was 

used to simulate molecular dynamics. Integrating Newton's classical equation of 

motion, MD simulations typically calculate the motion of atoms over time. 

Simulations have been used to predict protein stability in a physiological 

environment [86, 132, 185]. 

2.2.10 - Identification of possible genetic causes of disease in patients with 

clinical diagnoses of "congenital neutropenia" and "Hennekam syndrome" 

Sequencing results were aligned to the standard human genome sequence 

hg38 using the Burrows-Wheeler Aligner (BWA) program [119]. The SAM files 

were then sorted, indexed and converted to BAM format using the SAMtools 

program [203]. Single nucleotide variants (SNVs) and insertion/deletion (indel) 

variants were identified using the Genome Analysis Toolkit version 4.1.2.0 

(GATK4, http://www.broadinstitute.org/gatk/) [199]. Only exonic variants with a 

read depth (or coverage) >10× and a minimum mapping quality score of 30 were 

retained using the VCFtools program to reduce the number of false calls due to 

mapping errors [64, 204]. 

All synonymous SNVs, indels without a shift in frame coordinates, and 

variants with an exonic function annotated as "not applicable" or "unknown" were 

discarded. Candidate SNVs and indels obtained from the previous steps were further 

filtered for the presence of SNVs and indels in genes associated with primary 

immunodeficiency (PID). Candidate SNVs (or indels) were then classified as less 

common, rare or uncommon if the minor allele frequency (MAF) of the SNV (or 

indel) was less than 0.01 in all data from the Exome Aggregation Consortium 

(ExAC), 1000 Genomes (1000g), and the Genome Aggregation Database 

(gnomAD). All SNVs (or indels) were considered pathogenic if they were 

nominated as deleterious in at least one model from the following. 

Functional analysis was performed using hidden Markov models 

(FATHMM), protein variation effects analyzer (PROVEAN), and combined 

annotation-dependent depletion (CADD). FATHMM and PROVEAN were 

performed using the ANNOVAR program [206], and CADD was performed using 

http://www.broadinstitute.org/gatk/
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an online server (https://cadd.gs.washington.edu/snv, version: GRCh38-v1.5). All 

potentially pathogenic SNVs and indels were manually reviewed using the Single 

Nucleotide Polymorphism Database (dbSNP) program 

(https://www.ncbi.nlm.nih.gov/snp/) and Integrative Genome Viewer (IGV) 

software version 2.4.5. If two MAFs of SNVs (or indels) obtained from ANNOVAR 

and dbSNP were ambiguous, the MAF obtained from dbSNP was considered true. 

A candidate mutation was considered true if the mutation identified by GATK4 was 

confirmed using the Integrative Genomic Viewer (IGV) application. 
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CHAPTER 3 - EVALUATION OF GENE EXPRESSION DIFFERENCES 

AND INVESTIGATION OF KEY SIGNALING PATHWAYS IN PATIENTS 

WITH RBCK1 DEFICIENCY 

 

To approach an understanding of the mechanisms underlying the pathogenesis 

of this pathology, a comparative analysis of gene expression was conducted between 

transcription data from patients with RBCK1 deficiency, CINCA/NOMID 

syndrome, Muckle-Wells syndrome, MVK deficiency, and transcription data from 

healthy children (Figure 10). Genes with differential expression obtained from the 

analysis were annotated and functionally enriched, meaning information was 

obtained about their role in organism functioning, the signaling pathways in which 

these genes are involved, and the conditions under which they are expressed, based 

on information obtained by other researchers. 

From the dataset GSE40561, which includes a total of 48,803 genes from 

different individuals, 380 genes with differential expression were detected: 229 

genes had increased expression, while 151 genes had decreased expression. 

Comparative analysis of transcription between samples from healthy individuals and 

patients with RBCK1 deficiency showed the largest number of differentially 

expressed genes (DEGs) - 119 genes with significantly reduced expression (Table 

2). In addition, when comparing RBCK1 and MWS samples, a significant difference 

in the relatively high expression of 142 genes was identified in RBCK1 deficiency 

(Figure 10). 

 

Figure 10 - Significant differences in gene expression in RBCK1 deficiency 

compared to healthy individuals and patients with other autoimmune syndromes 
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Table 2 - List of the top 10 most down-regulated and up-regulated genes in 

RBCK1 deficiency compared to healthy samples 

Downregulated genes expression Upregualted genes expression 

№ Genes p logFC № Genes p logFC 

1 CISD2 7.537936e-18 -0.5969954 1 HS:551123 6.458791e-13 3.1687011 

2 EPB41 4.108343e-16 -0.6256048 2 HS:552143 1.583777e-07 1.2937618 

3 LOC253012 5.739984e-16 -0.6810695 3 F LJ00312 3.640115e-07 1.6176159 

4 FAM83A 1.703811e-13 -0.7337758 4 HS:19339 6.034732e-07 0.4643016 

5 

NUP98 5.965986e-13 

-

0.4364548 

5 

ANKMY 2 6.517125e-06 0.4189648 

6 

CHD2 6.279939e-12 

-

0.4504437 

6 

RPS29 1.978019e-05 0.4123195 

7 

RAP1GAP 1.338901e-11 

-

0.9886351 

7 

HS:531457 7.585137e-05 0.4194266 

8 

HS:563750 1.539916e-11 

-

0.5622475 

8 

HS:542923 0.000385 1.1559277 

9 

ABCC13 1.908913e-11 

-

0.5476611 

9 

HIST1H2BI 0.000278 0.9167271 

10 MAOA 3.456357e-11 -0.7114969 10 PLA2R1 0.000193 0.8924394 

All non-expressed genes were removed, and a new principal component 

analysis (PCA) diagram was created. The distribution of data before and after 

normalization can be seen in the histograms (Figure 11) and boxplots (Figure 12). A 

total of 532 DEGs (genes with altered expression) were obtained in our second 

dataset GSE31064 after standardization of microarray results, among which 211 

genes had decreased expression and 321 genes had increased expression. 
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The next step was to determine the involvement of differentially expressed 

genes in RBCK1 deficiency in key signaling pathways and evaluate their impact on 

biological functions. 
 

 

Figure 11 - Histogram of the distribution of unprocessed expression data before 

normalization (A) and after (B) 

Note: The x-axis represents the raw expression values in arbitrary units, while 

the y-axis represents the number of genes with a certain level of expression. 

hysto 
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Immune response, inflammatory response, and protein phosphorylation 

pathways in the category of biological processes were overrepresented in GO and 

pathways obtained from co-expressed gene clusters (Table 3, Figure 13). 

 

 

Figure 12 - Boxplots of raw expression data before normalization (A) and after 

normalization (B) 

Note. On the x-axis - transcript samples, on the y-axis - the level of expression. 
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Protein binding and RNA binding pathways were the most enriched in the 

category of molecular functions. Finally, cytoplasm, cytosol, and nucleus were the 

most enriched pathways in the category of cellular components. After uploading 

identifiers of downregulated genes (with reduced expression) from the comparison 

between healthy and RBCK1-deficient samples to the WikiPathways database, 425 

signaling pathways were selected for analysis. Among those that stood out were 

signaling pathways associated with the SARS-CoV-2 virus: WP5115, WP5039, 

WP5098, of which 4 genes from our set - FAM83A, IFI27, NUP98, and TSC1 were 

identified. Additionally, it was found that the gene HP, which was in the group of 

downregulated genes in the comparison between healthy and MWS samples, was 

involved in a pathway related to COVID-19. 

Protein binding and RNA binding pathways were the most enriched in the 

category of molecular functions. Finally, cytoplasm, cytosol, and nucleus were the 

most enriched pathways in the category of cellular components. After uploading the 

identifiers of downregulated genes (with decreased expression) from the comparison 

between healthy samples and RBCK1-deficient samples to the WikiPathways 

database, 425 pathways were collected. Three most notable pathways were 

associated with SARS-CoV-2 (COVID-19): WP5115, WP5039, WP5098, among 

which 4 genes from our set, FAM83A, IFI27, NUP98, and TSC1, were found. In 

addition, it was found that the HP gene, which was in the downregulated gene group 

in the comparison between healthy and MWS samples, was involved in a pathway 

related to COVID-19. 

Based on the clusters formed using cemiTool and previously identified DEGs, 

30 individual protein-protein interaction graphs were generated. Only one graph, 

which depicts the interaction between 54 proteins from one of the 14 cemiTool 

clusters, showed statistical significance (Figure 14). 

The subfamilies of lectin-like receptors of killer cells, namely KLRD1, 

KLRC1, KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR3DL2, and KIR3DL3, 

had the closest interrelation in the protein interaction network. Compared to healthy 
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individuals and individuals with CINCA syndrome, a decrease in the expression of 

several genes was detected. 

Table 3 - Example of five GO annotations with the smallest false discovery 

rate coefficient 

GO annotation 

number 

Description of GO (gene functions, 

cellular components, and biological 

processes) 

The 

proportion of 

annotated 

genes 

False discovery 

rate (FDR) 

GO:0071799  
Cellular response to prostaglandin D 

stimulation. 
2/5  0.0125 

GO:0021796  Regionalization of the cerebral cortex. 2/7  0.0162 

GO:0030656  
Regulation of vitamin metabolism 

process. 
2/12  0.0349 

GO:0051712  
Positive regulation of killing of cells 

from another organism. 
2/13  0.0376 

GO:0001829  
Differentiation of trophoectodermal 

cells. 
2/15  0.0456 

In addition, chemokine genes (CXCL8 and CXCL10) were particularly 

highlighted because their activity deficiency can lead to serious errors in cell 

functioning or cell death due to disruption of chemokine signaling. The p-value for 

the enrichment of the PPI network created was 1.0e-16 (Figure 14). 
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Figure 13 - Histograms of Gene Ontology (GO) representing enriched pathways 

among genes with decreased expression obtained by comparing healthy individuals 

and patients with a deficiency RBCK1 

Note: The GO terms refer to "molecular function," "cellular component," and 

"biological process. 
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In the functional enrichment of differentially expressed genes in RBCK1 

deficiency (compared to healthy individuals), involvement of these genes in several 

significant signaling pathways was detected. In particular, signaling pathways for 

leishmaniasis development, susceptibility to staphylococcal infection, cholera, NK 

cell cytotoxicity, and various other pathways affecting the immune response were 

involved. This does not mean that RBCK1 deficiency increases the probability of 

the corresponding pathology, but it becomes clearer that the systemic influence of 

the deficiency of one protein on various processes that somehow affect the immune 

system and anti-infective defense (Tables 4 and 5). 

 

Figure 14 - Statistically significant protein-protein interactions among 54 proteins 

based on the analysis results of the STRING service 
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Table 4 - Groups of differentially expressed genes in RBCK1 deficiency 

(compared to healthy individuals), involved in several significant signaling 

pathways, obtained by functional enrichment analysis using the KEGG database 
Intracellular 

signaling, 

Hematopoietic cell 

lineage 

Dilated 

cardiomyopathy 

Pantothenate 

and CoA 

biosynthesis 

Vibrio 

cholerae 

infection 

TIAM1  MME  TPM3  VNN1  TCIRG1  

FOXO3  HLA-DRB5  ACTG1  UPB1  ACTG1  

STAT1  CD8B  ITGB1  VNN2  PRKACB  

GNB4  IL1R2  ITGA4  ZNF586  

GRB2  CSF3R  PRKACB  VNN3  

CXCL5  CD8A    

PIK3CG  IL1B    

ROCK1      

PIK3R1     

VAV3     

 

Table 5 - Groups of differentially expressed genes in RBCK1 deficiency 

(compared to healthy individuals), involved in several significant signaling 

pathways, obtained by functional enrichment analysis using the KEGG database 

NK cell-mediated 

cytotoxicity. 

Processing 

and 

presentation of 

antigen. 

Leishmaniasis 

Staphylococcus 

aureus 

infection 

RIG-I-like 

receptor 

signaling 

pathway 

KIR2DL3  KIR2DL3  FCGR2A  FCGR2A  CXCL8 

KIR2DL1  KIR2DL1  PTGS2  KRT23  MAPK13 

KIR2DS5  KIR2DS5  HLA-DRB5  FCGR1A  CXCL10 

KIR3DL1   KIR3DL1 FCGR3B  FCAR  ISG15 

KLRD1 KLRD1 NCF4  FPR2  

KLRC2  KLRC2 TLR2    

KIR3DL2 KIR3DL2 IL1B    

KIR2DS3 KIR2DS3 NCF2   

KIR3DL3  KIR3DL3    

KLRC1  KIR2DL4    

SH2D1B  KLRC1    

GZMB  IFNG    

FAS3LG      

PRF1     
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Thus, this chapter presents the results of a bioinformatic analysis conducted 

to obtain information that helps to uncover the pathogenesis of the pathology in 

patients with RBCK1 deficiency. Our previous studies have shown that 14 new 

genes involved in ribosome biogenesis, rRNA processing, gene expression, mRNA 

processing, nuclear lumen, intracellular non-membrane-bound organelles, 

nucleoplasm, small subunit processomes, antigen processing and presentation 

pathway, and eukaryotic ribosome biogenesis may play a role in increased 

susceptibility to viral infections such as influenza or herpes. In this syndrome, these 

signaling pathways were not involved in the pathological process, which further 

emphasizes the peculiarity of the RBCK1 deficiency pathogenesis and coincides 

with observations of increased susceptibility specifically to bacterial infections. 

Regarding the antiviral activity of the immune response in RBCK1-deficient 

patients, according to clinical data, increased susceptibility to them is a rare case. 

Our study demonstrated the involvement of the signaling pathway responsible for 

the response to coronavirus infection. However, it was not proven that RBCK1-

deficient patients are at risk of COVID-19. This can be explained by the 

ubiquitination of interferon regulatory factor 3, an important signaling molecule 

associated with Toll/IL-1R domain-containing adapter inducing IFN and TLR 3. 

As a result of the studies, a highly reliable decrease in CISD2 gene expression 

was detected in this patient with RBCK1 deficiency. It is known that a defect in 

CISD2 leads to endoplasmic reticulum stress and apoptosis [44], including 

peripheral blood mononuclear cells. Considering the close functional relationship of 

this protein with apoptosis and cellular stress processes, it can be assumed that the 

influence of low expression of this gene on the pathogenesis has a negative effect on 

the stability of peripheral blood mononuclear cells to apoptosis and cell death. 

However, changes in the activity of mTOR, PI3K/AKT, Rho, and Nf-kB 

signaling pathway genes directly or indirectly affect the expression of genes in the 

immune system. All the differences in gene expression found do not explain the 

immediate cause of increased susceptibility to pyogenic infections, but they reveal 
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some aspects of molecular interactions, allowing us to better understand the 

pathogenesis of RBCK1 deficiency. 
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CHAPTER 4 - INVESTIGATION OF THE IMPACT OF IDENTIFIED 

NON-SYNONYMOUS SINGLE NUCLEOTIDE VARIANTS IN THE 

ELANE AND TCIRG1 GENES ON THE STRUCTURE AND FUNCTION 

OF THE ELANE AND TCIRG1 PROTEINS 

Congenital neutropenia syndromes are a group of rare diseases that manifest 

from birth and are characterized by low levels of neutrophils, which are necessary 

to fight infections. The most common and serious immunodeficiency associated with 

congenital neutropenia is severe congenital neutropenia, a rare blood disorder that, 

according to Donadieu J. et al., 2013, affects approximately 1 in 100,000 people of 

European descent, many cases of which are inherited in an autosomal dominant 

pattern [65]. Despite several causal genes being identified, the genetic basis of >30% 

of cases remains unknown. 

Approximately half of all cases of severe congenital neutropenia are caused 

by variants in the ELANE gene. Only a small percentage of cases of this disorder 

are attributed to other related genes, including TCIRG1. 

This study provides data on nsSNPs in the TCIRG1 and ELANE genes 

obtained from the online NCBI dbSNP database, as well as data on nsSNPs for the 

TCIRG1 gene from NGS data of one patient, analyzed using bioinformatics 

methods, including in silico modeling and simulation of molecular dynamics, which 

allowed for the identification of their potential destabilization of the structure and 

function of the TCIRG1 and ELANE proteins. 

 

4.1 - Determining the harmfulness of non-synonymous single nucleotide 

substitutions using SIFT and PolyPhen-2 tools in the TCIRG1 and ELANE 

genes 

The NCBI database reports 5627 SNPs in the TCIRG1 gene. The first step 

was to select only those polymorphisms that cause amino acid substitutions. It was 

found that less than 2% of the substitutions, 811 out of 5627, are non-synonymous 
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coding (missense) substitutions (nsSNPs). In the ELANE gene, only 301 nsSNPs 

out of 3646 SNPs were identified. 

The programs SIFT and PolyPhen-2 calculate the impact of nsSNPs on protein 

function and evaluate whether the induced amino acid is acceptable at a specific 

location. SIFT classifies each nsSNP based on scores, and those with scores below 

a threshold are deemed "tolerated" or benign, while those with scores above the 

threshold are considered "damaging" or deleterious. For SIFT, the threshold for 

classification as damaging nsSNP was determined as a score of >0.5. 

In the TCIRG1 gene, the SIFT program predicted 118 potentially deleterious 

nsSNPs, PolyPhen-2 predicted 64, and the mutually intersecting results of the 

combined analysis allowed only 34 nsSNPs to be selected that resulted in amino acid 

substitutions out of the total of 811 nsSNPs. Table 6 shows a portion of the obtained 

analysis results. 

For substitutions in the ELANE gene, the SIFT program identified 21 nsSNPs 

as deleterious polymorphisms, while the combined analysis of SIFT and PolyPhen-

2 only indicated 8 nsSNPs as deleterious out of the total of 301 nsSNPs (Table 7). 

To confirm the deleteriousness of the polymorphisms selected through SIFT 

and PolyPhen-2, additional in silico tools were used. 

The results of predicting the pathogenicity of significant nsSNPs in the 

TCIRG1 gene using 17 additional analysis tools are presented in Figure 15 and Table 

8. 
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Table 6 – Deleterious/Damaging non-synonymous single nucleotide 

polymorphisms (nsSNP) in the TCIRG1 gene based on the results of SIFT and 

PolyPhen-2 analysis 

ID nsSNP А.A. SIFT Score PolyPhen-2 Score 

rs36027301 R56W Del 0 Pd 0.999 

rs368945298 M546V Del 0 Pd 0.999 

rs115854062 P572L Del 0 Pd 1 

rs150260808 I721N Del 0 Pd 1 

rs137853150 G405R Del 0 Pd 1 

rs137853151 R444L Del 0 Pd 1 

rs147580611 F610S Del 0 Pd 1.00 

rs148921764 E722K Del 0 Pd 1.00 

rs140963213 A417T Del 0.002 Pd 1 

rs144775787 A778V Del  0.46 Pd 0.883 

rs145080707 R213W Low 0.012 Pd 1 

rs150648332 R57H Del 0.001 Pd 1.00 

rs150260808 I721N Del 0 Pd 1 

rs201329219 R109W Del 0.014 Pd 1.00 

rs367703865 R191H Del 0.32 Pd 0.999 

rs371214361 S532C Del 0.001 Pd 1.00 

rs199914625 S474W Del 0 Pd 1 

rs200851583 G458S Del 0 Pd 1 

rs371658110 G192S Del 0.003 Pd 1.00 

rs370319355 R50C Del 0 Pd 1 

rs376351835 F529L Del 0.013 Pd 1.00 

rs371004297 G379S Del 0.011 Pd 1.00 

rs200209146 N730S Del 0.022 Pd 1.00 

rs200415611 V375M Del 0.001 Pd 1.00 

Note: nsSNP ID - identifier of non-synonymous single nucleotide 

polymorphism, A.A. - position of amino acid, Del - high probability of pathogenicity 

of mutation; Low - low probability of pathogenicity of mutation, Pd - predicted 

probable pathogenicity of mutation. 
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Table 7 - Deleterious/Damaging nonsynonymous single nucleotide 

polymorphisms (nsSNPs) in the ELANE gene based on the analysis results in SIFT 

and PolyPhen-2 

ID nsSNP А.A SIFT Score  PolyPhen-

2 

Score Allelic Frequancy 

rs201163886 R34W Del 0.002 Pd 1  

rs28931611 C71R Del 0 Pd 1 6.076e-06 

rs137854449 V101M Del 0.005 Pd 0.964  

rs137854448 P139L Del 0 Pd 1  

rs199558534 R143C Del 0.048 Pd 1  

rs57246956 C151Y Del 0 Pd 1  

rs201788817 A166T Del 0.33 Pd 0.976  

rs199891906 A166V Del 0.23 Pd 0.582  

rs193141883 T175M Del 0.008 Pd 1 gnomAD_exome

0.0005 

rs200449787 R182H Del 0.015 Pd 1  

rs367663236 V190M Del 0.047 Pd 1  

rs201723157 R193W Del 0.006 Pd 1  

rs201139487 G203S Del 0 Pd 1 4.094e-06 

rs137854446 L206F Del 0 Pd 1  

rs201664319 N209K Del 0.03 Pd 0.983  

rs140880838 G210R Del 0.019 Pd 1  

rs137854451 G214R Del 0.002 Pd 1  

rs200384291 F218L Del 0.011 Pd 0.998  

Note: nsSNP ID - identifier of non-synonymous single nucleotide 

polymorphism, A.A. - position of amino acid, Del - high probability of pathogenicity 

of mutation; Low - low probability of pathogenicity of mutation, Pd - predicted 

probable pathogenicity of mutation. 

All of the listed amino acid substitutions were predicted to be deleterious by 

the majority of algorithms (FATHMM-MKL, SNP-GO, PHD-SNP, PANTHER, 
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SNAP2, P-MUT PROVEAN, FATHMM, LRT, M-CAP, CAAD, META SVM, 

METALR, Mutation Assessor, and Mutation Taster) used in this study. Each of the 

algorithms used in this study has its unique threshold and evaluation criterion to 

determine the pathogenicity or tolerability of the substitution. 

For the TCIRG1 gene, the combination of SIFT and VEST 3 algorithms 

identified only 6 nsSNPs (10% of the previously selected ones) as deleterious, while 

51 were classified as tolerable. PolyPhen-2, FATHMM, M-CAP, and PANTHER 

showed the highest percentage of deleterious predictions. When using the SNAP2 

method, 41 substitutions were considered deleterious (71%), while 16 predictions 

had no effect (SNAP2 score of 100). PANTHER was used to predict the impact of 

54 (92%) nsSNPs on the TCIRG1 protein, and 48 nsSNPs were likely to have a 

damaging effect, 6 nsSNPs might have a possibly damaging effect, and 3 nsSNPs 

were likely to be benign. Specifically, those with a time greater than 450 ms were 

classified as possibly damaging, those with a time between 450 ms and 200 ms were 

classified as likely benign, and those with a time less than 200 ms were not classified. 

The PROVEAN program, designed to predict the impact of SNPs on protein 

function, identified 22 (38%) nsSNPs in the TCIRG1 gene as significantly 

deleterious (with respect to their impact on the structure and function of the protein), 

while 35 nsSNPs were classified as neutral based on the PROVEAN threshold 

criteria (> -2.667). Using the threshold (> 0.65, from 5.545 to 5.975), the mutation 

evaluator classified 24 nsSNPs as deleterious, of which 12 were classified as high, 

17 as moderate, 5 as low, and 19 were not detected. 

FATHNMM and FATHMM-MKK (<0.5), CADD (>15), DANN (>0.5), 

Mutation Taster (<0.5), and their respective scores predict more than 75-90% of 

nsSNPs as deleterious/damaging. P-Mut predicts 45 (75.21%) deleterious, 7 neutral, 

and data were missing for 5 nsSNPs with the threshold (<0.5). LRT predicts 42 

(77%) deleterious nsSNPs with a result (>0.001) and 13 neutral ones. PhD-SNP, 

SNP-GO, and M-CAP identified 47 (82%), 35 (61%), and 54 (94.73%) nsSNPs as 

deleterious, respectively. Additionally, MetalR and MTA-SVM identified 10 (17%) 

and 37 (64%) nsSNPs as deleterious, respectively (Figure 15). 
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In conclusion, based on the evaluation of substitution positions using 

PANTHER, PROVEAN score, SIFT score, SNP&GO, FATHMM, LRT, M-CAP, 

VEST3, CAAD, METALR, Mutation Assessor, Mutation Taster, FATHMM-MKL, 

PHD-SNP score, and PolyPhen-2, a group of 15 nsSNPs, including P572L, M546V, 

I721N, F610S, A732T, F51S, A717D, E722K, R57H, R109W, R191H, S532C, 

G192S, F529L, and H804Q, was found to be significantly deleterious by all modern 

methods. Only LRT did not confirm the effects of the A717D substitution predicted 

by other tools. The results obtained using all prediction algorithms were statistically 

significant and strongly correlated with each other (the p-value for the Student's t-

test between the tools was 0.001). 

The results of our nsSNP analysis of the ELANE gene showed that 21 nsSNPs 

were determined to be deleterious using the SIFT algorithm. Of these 21 SIFT-

predicted deleterious nsSNPs, 18 were also predicted to be deleterious by the 

PolyPhen-2 and FATHMM-MKL algorithms. However, other algorithms used in 

this study did not show 100% agreement (Figure 16). 

Among all 21 SIFT-predicted deleterious nsSNPs, the LRT and FATMANH 

algorithms predicted the fewest matches. Both algorithms predicted only 10 

pathogenic nsSNPs for ELANE, while 11 were classified as tolerant, neutral, or of 

unknown significance. 

The PolyPhen-2 platform identified 18 pathogenic nsSNPs; VEST, CADD, 

and DANN platforms predicted 19; M-Cap and Mutation Taster predicted 20 

pathogenic nsSNPs each. Using the SNAP2 approach, 18 damaging mutations were 

detected, while three had no association with pathology. 

For the PANTHER program, 17 nsSNPs were considered as non-synonymous 

mutations, among which 10 nsSNPs were classified as likely pathogenic, 7 as 

possibly pathogenic, 2 as likely benign, and 2 as variants of unknown significance. 

When analyzed using PROVEAN, 14 out of 21 nsSNPs in the ELANE gene were 

predicted to be strongly deleterious, while 7 were considered neutral. 

Mutation Assessor considered 20 nsSNPs to be deleterious, including 3 with 

high pathogenicity, 6 with medium, and 12 with low, and one with unknown 
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significance. P-Mut predicted 10 mutations as pathological, 10 with unknown 

significance, and one without a result. PhD-SNP predicted 13 mutations as 

pathological, SNP-GO - 10, MetalR - 17, and MTA-SVM - 15. 

All modern methods for evaluating the pathogenicity of nsSNPs used together 

revealed 8 overlapping common mutations in the ELANE gene: C71R, P139L, 

C151Y, T175M, G203S, G214R, R193W, and F218L (Table 9). 

According to the software used, it is known that the allele frequency of C71R 

in Latin Americans is 3.655e-05, T175M in Africans is 0.0002, in Latin Americans 

- 0.0023, in East Asians - 5.832e-05, in Europeans - 3.632e-05, and in Latin 

Americans - 2.979e-05. The results of all prediction algorithms were statistically 

significant and closely related to each other. The value of the Student's coefficient 

between the tools has a p-value of 0.001. 

 

 

 

 

 

 



Table 8 - Assessment of pathogenicity of identified TCIRG1 substitutions using various prediction tools 

Замена LRT Mutation 

Taster 

Mutation 

Accessor 

PROVEAN FATHMM VEST3 MTA 

SVM 

METALR M-CAP CADD DANN FATHMM-

MKK 

PhD-

SNP 

PANTHER SNP-

GO 

P-MUT SNAP2 

P572L D D H D D D D D D D D D D D D D D 

M546V D D H D D D D D D D D D D D D D D 

I721N D D H D D D D D D D D D D D D D D 

F610S D D M D D D D D D D D D D D D D D 

A732T D D H D D D D D D D D D D D D D D 

F51S D D M D D D D D D D D D D D D D D 

A717D N D M D D D D D D D D D D D D D D 

E722K D D H D D D D D D D D D D D D D D 

R57H D D H D D D D D D D D D D D D D D 

R109W D D M D D D D D D D D D D D D D D 

R191H D D H D D D D D D D D D D D D D D 

S532C D D H D D D D D D D T D D D D D D 

G192S D D H D D D D D D D D D D D D D D 

F529L D D M D D D D D D D D D D D D D D 

H804Q D D M D D D D D D D D D D D D D D 

G405R D D - D D D D D D D D D D D D D D 

S474W D D - D D D D D D D D D D D D D D 

G458S D D - D D D D D D D D D D D D D D 

R444L D D - D D D D D D D D D D D D D D 

R56P D D - D D D D D D D D D D D D D D 

G379S D D - D D D D D D D D D D D D D D 

R757C D D M D D D D D D D T D D D D D D 

96 
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N730S D D M D D T D D D D D D D D D D D 

V375M D D - D D D D D D D D D D D D D D 

T314M D D - D D D D D D D D D D D D D D 

D517N D D H D D T D D D D D D D D D D D 

R92W D D M D D T D D D D D D D D D D D 

T368M D D - D D D D D D D D D D D D D D 

A417T D D H D D D D D D D D T D D D D D 

R363C D D - D D D D D D D D D D D D D D 

R56W D D H D D T D T - D D D D D D D D 

A778V D D M D D D D D D D D D D D N N N 

R50C D D M D D T D D D D D D D D D D - 

V52L D D M T D T D D - D D D D D D D D 

Note. Substitution refers to an amino acid substitution in the molecule; the following columns represent mutation 

pathogenicity prediction programs. D - damaging substitution, T - tolerated, N - neutral, M - medium probability, L - low, H - high, 

P - pathogenic, -  no data. 

 

 

 

 

 

 

Continue table 8 
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Table 9 - Assessment of pathogenicity of identified ELANE substitutions using various prediction tools 

Замена LRT Mutatio

n Taster 

Mutation 

Accessor 

PROVEAN FATHMM VEST3 MTA 

SVM 

METALR M-CAP CADD DANN FATHMM-

MKK 

PhD-

SNP 

PANTHER SNP-

GO 

P-MUT SNAP2 

C71Y 0.001 

- 

1 

D 

4.21 

H 

-11.22 

D 

-4.7 

D 

0.94

4 

D 

1.09

7 

D 

0.968 

D 

0.97

3 

D 

23.9 

D 

0.987 

D 

 

 

0.817 

D 

0.93

3 

D 

0.907 

D 

0.9

82 

D 

0.71 

D 

77 

D 

P139L 0.002 

- 

1.00 

D 

2.72 

M 

-8.79 

D 

-3.56 

D 

0.91

2 

D 

0.95

6 

D 

0.886 

D 

0.94

2 

D 

26.6 

D 

0.999 

D 

0.747 

D 

0.73

3 

D 

0.888 

D 

0.8

55 

D 

0.85 

D 

59 

D 

C151Y 0.001 

- 

1.00 

D 

2.745 

M 

-10.41 

D 

-3.34 

D 

0.92

5 

D 

1.00

5 

D 

0.900 

D 

0.92

3 

D 

25.2 

D 

 

0.996 

D 

0.916 

D 

0.93

9 

D 

0.988 

D 

0.9

39 

D 

0.9 

D 

82 

D 

T175M 0.002 

- 

0.94

0 

D 

1.98 

M 

-4.76 

D 

-2.48 

D 

0.77

4 

D 

0.79

8 

D 

0.812 

D 

0.89

1 

D 

33 

D 

 

0.999 

D 

0.685 

D 

0.24

2 

N 

0.833 

D 

0.7

19 

D 

0.7 

D 

20 

D 

G203S 0.001 

- 

0.99

7 

D 

3.865 

H 

-5.4 

D 

-7.34 

D 

0.73

7 

D 

0.91

5 

D 

0.966 

D 

0.96

6 

D 

27 

D 

0.998 

D 

0.826 

D 

0.89

8 

D 

0.909 

D 

0.9

09 

D 

0.89 

D 

77 

D 

G214R 0.001 

- 

1.00 

D 

4.2 

H 

-6.2 

D 

-6.13 

D 

0.96

5 

D 

0.99

7 

D 

0.989 

D 

0.94

9 

D 

26.7 

D 

0.999 

D 

0.934 

D 

0.92

4 

D 

0.98 

D 

0.9

04 

D 

0.9 

D 

94 

D 

R193W 0.071 

- 

1.00 

D 

1.755 

M 

-5.69 

D 

-2.45 

D 

0.80

5 

D 

0.06

8 

D 

0.733 

D 

0.80

6 

D 

27 

D 

0.998 

D 

0.240 

D 

0.56

6 

D 

0.909 

D 

0.8

34 

D 

0.63 

D 

55 

D 

F218L 0.001 

D 

 

0.99

0 

D 

2.915 

M 

-4.82 

D 

-3.25 

D 

0.76

6 

D 

0.89

8 

D 

0.861 

D 

0.80

7 

D 

24.7 

D 

0.998 

D 

0.904 

D 

0.76

9 

D 

0.531 

D 

0.8

99 

D 

0.84 

D 

76 

D 

Note. Substitution refers to an amino acid substitution in the molecule; the following columns represent mutation 

pathogenicity prediction programs. D - damaging substitution, T - tolerated, N - neutral, M - medium probability, L - low, H - high, 

P - pathogenic, - no data.



 

 

Figure 15 - Results of predicting the impact of 64 nsSNPs in the TCIRG1 gene 

analyzed by eighteen computational tools 

 

Figure 16 - Results of predicting the impact of 21 nsSNPs in the ELANE gene, 

analyzed by eighteen computational tools 

Thus, following this stage of research, 15 of the most harmful non-

synonymous single nucleotide substitutions (and corresponding amino acid 

99 
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substitutions) were selected, which according to the predictions of the algorithms 

used, will have the greatest impact on the structure and function of the TCIRG1 

protein: rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, 

rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, 

rs121908251, rs149792489, rs116675104, rs118141250. One of these substitutions 

(rs118141250, Val52Leu) was previously identified in a patient from the Sverdlovsk 

region through whole-genome sequencing. 

For the ELANE gene, a total of 8 nsSNPs - rs28931611, rs57246956, 

rs137854448, rs193141883, rs201723157, rs201139487, rs137854451, and 

rs20038429 - were selected. These nsSNPs (and corresponding amino acid 

substitutions) were subsequently analyzed by other methods in order to determine 

their impact on the 3D structure and function of the proteins. 

 

4.2 - Prediction of nsSNP impact on protein stability using computational 

tools I-Mutant and MU-pro 

The impact of nsSNPs with high pathogenic risk on the stability and function 

of the TCIRG1 protein was evaluated using the I-Mutant 3.0 web service. The results 

showed that the amino acid substitutions G405R, S474W, and A778V increase the 

stability of the protein, while P572L, M546V, I730N, F610S, A732T, F51S, A717D, 

E722K, R57H, R109W, R191W, S532C, G192S, F529L, H804Q, G458S, R444L, 

R56P, G379S, R757C, N730S, V375M, T314M, D517N, R92W, T368M, A417T, 

R363C, R56W, and R50C decrease its calculated stability (Table 10). 

The results of the impact of nsSNPs with high pathogenic risk on the stability 

and function of the ELANE protein showed that the amino acid substitutions V101L 

and A166V increase the protein stability, while R34W, C71R, V101M, P139L, 

R143C, C151Y, A166T, T175M, R182H, V190M, R193W, G203S, L206F, N209K, 

G210R, G214R, F218L, P262S, and P262L R50C decrease its predicted stability. At 

the same time, the Mu-pro algorithm showed that all the nsSNPs with a high 

pathogenicity score identified in the previous tests reduce protein stability 
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Table 10 - Results of analysis of highly deleterious nsSNPs in the TCIRG1 

gene using the I-Mutant 3.0 program 

A.A.C "Confidence score Impact on protein stablity 

P572L -0.35 Decrease 

M546V -0.56 Decrease 

I730N -1.74  Decrease  

F610S -1.43 Decrease 

A732T -0.69  Decrease 

F51S -1.78 Decrease  

A717D -0.51 Decrease 

E722K -0.44  Decrease 

R57H -1.47 Decrease 

R109W -0.06 Decrease 

R191W -0.37 Decrease 

S532C -0.58  Decrease 

G192S -1.00  Decrease 

F529L -0.95 Decrease 

H804Q -0.10 Decrease 

G405R  -0.28 Increase 

S474W -0.10 Increase 

G458S  -1.26 Decrease 

R444L -0.23 Decrease 

R56P  -0.85  Decrease 

G379S  -1.41 Decrease 

R757C  -1.00 Decrease 

N730S  -0.34  Decrease 

V375M  -1.06  Decrease 

T314M  0.02 Decrease 

D517N  -0.98  Decrease 

R92W  -0.24  Decrease 

T368M  -0.37  Decrease 

A417T  -0.78 Decrease 

R363C  -1.00 Decrease 

R56W  -0.49 Decrease 

A778V -0.15 Increase 

R50C -1.20 Decrease 
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4.3 - Analysis of the impact of nsSNPs in the TCIRG1 and ELANE genes 

on protein conserved regions 

According to the results of the ConSurf analysis, 22 pathogenic nsSNPs were 

found in highly conserved regions (7-9 conservation score) of the TCIRG1 protein. 

Additionally, 16 substitutions - S7K, V52L, G379S, M403I, G405R, G458S, 

D517N, F529L, S532C, M546V, A640S, D683H, I732N, N730S, A732T, H804Q - 

were predicted as substitutions in functional and exposed amino acid residues of the 

protein. Ten substitutions such as A20V, R56P, R57H, R191H, G192C, E321K, 

R366H, T368M, R444L, and E722K were predicted in the region of functional and 

exposed residues, while the remaining 16 - S7K, V52L, G379S, M403I, G405R, 

G458S, D517N, F529L, S532C, M546V, A640S, D683H, I732N, N730S, A732T, 

and H804Q - were predicted as buried and structural residues. The following 18 

substitutions - S3F, R28W, S45A, R50C, R92W, R109W, R166T, T314M, D328M, 

S340L, R363C, R382H, R467H, S474W, P572L, Y626S, R628W, and R757C - 

were predicted as substitutions in exposed regions, while the remaining 9 - F51S, 

V348M, V375M, A417T, T570M, F610S, A717D, A778V, and M783I - were 

predicted as substitutions in buried amino acids. The results are presented in Figure 

17. 

According to the ConSurf analysis results for the ELANE protein, 22 

dangerous nsSNPs were identified in highly conservative regions of the protein (7-

9 on the conservation scale). Among these 22 missense variants, 8 were located in 

highly conservative positions, 2 - P139L and C71R - were predicted to be functional 

and exposed residues, and the remaining 3 - G214R, C151Y, and C71Y - were 

predicted to be buried and structural residues. The following 12 substitutions - 

R34W, R143C, A166T, A166V, T175M, R182H, V190M, R193W, N209K, G210R, 

P262S, and P262L - were predicted to be amino acid substitutions in exposed regions 

of the protein, and F218L, V101L, and V101M - as substitutions in buried residues.  
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Figure 17 - Location of amino acid substitutions in the TCIRG1 protein 

considering evolutionary conservation and the location of different regions of the 

protein according to the ConSurf analysis 
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Figure 17 - Location of amino acid substitutions in the TCIRG1 protein 

considering evolutionary conservation and the location of different regions of the 

protein according to the ConSurf analysis 

Note: Value 1 indicates high variability of the region, while 9 indicates the 

most conservative region in terms of evolution. 

 

4.4- 3D modeling of protein structures of TCIRG1, ELANE with the 

identified potentially harmful amino acid substitutions taken into account 

 

The prediction of protein structures, taking into account the selected amino 

acid substitutions identified in previous stages of the study, was performed using 

Phyre2, I-Tasser, HHpred, and AlphaFold2. For the protein TCIRG1, there were 15 

amino acid substitutions, including the one identified in a patient from the 

Sverdlovsk region. All of these mutations were included in a single 3D structure of 

the TCIRG1 protein, as they were located in different regions. Thus, when 

Continue figure 17. 
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overlaying and comparing the models, differences in the 3D structure for each of the 

regions where a substitution could occur were observed. 

The template for predicting the impact of substitutions on TCIRG1 in Phyre2 

was the model template C6VQ7A (the template with the highest similarity according 

to the Phyre2 server data). Phyre2 was used to create 3D structures of the TCIRG1 

protein considering its 56 mutations. nsSNP substitutions in the TCIRG1 protein 

sequence were modeled separately and then passed to Phyre2, which predicted 3D 

structures of the mutant proteins. However, our comparative studies showed that 

AlphaFold2 provided much higher quality results for analyzing TCIRG1 than 

Phyre2. Therefore, further MDS investigations of the TCIRG1 protein were 

conducted without using Phyre2. 

An example of the 3D structure of the TCIRG1 protein in AlphaFold2 with 

the selected amino acid substitutions included in the study is presented in Figure 18. 

The wild-type structure was previously predicted by AlphaFold2 and is available for 

download from UniProt (identifier Q13488). 

When comparing the 3D models of wild-type and mutant protein types, 

metrics for comparing models (TM-score) and root mean square deviation (RMSD) 

of distances between natural and mutant model carbon atoms (during molecular 

dynamics simulations for 50 and 100 ns) were determined. Low TM-score and high 

RMSD values indicated that the mutant structure differed from the wild-type 

structure. The corresponding analysis of 34 nsSNPs identified as harmful to the 

TCIRG1 protein during joint analysis using SIFT and PolyPhen2 is presented in 

Table 11. 

The mutant R92W (rs371907380) has the highest RMSD value of 0.89B, 

followed by R444L (rs137853151), N730S (rs200209146), and S532C 

(rs371214361) with 0.84B, 0.84B, and 0.81B, respectively. F610S, M546V, and 

P572L have RMSD values of 0.81B, 0.78B, and 0.78B, respectively, indicating no 

significant structural differences from the wild type. 
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Figure 18 - 3D structure of wild-type and mutant-type TCIRG1 protein predicted 

by AlphaFold2, and superimposition of the three-dimensional structures (at the 

bottom) 

 

Other nsSNPs showed minor differences, including I721N (0.53B RMSD), 

A732T (0.78B RMSD), R51C (0.78B RMSD), A717D (0.73B RMSD), E722K 

(0.46B RMSD), R57H (0.48B RMSD), R109W (0.78B RMSD), R191H (0.49B 

RMSD), G192C (0.78B RMSD), F529L (0.58B RMSD), H804Q (0.48B RMSD), 

G405R (0.48B RMSD), S474W (0.53B RMSD), G458S (0.48B RMSD), R56P 

(0.48B RMSD), R56W (0.78B RMSD), G379C (0.58B RMSD), R757C (0.48B 

RMSD), V375M (0.54B RMSD), T314M (0.78B RMSD), D517N (0.49B RMSD), 

T368M (0.78B RMSD), A417T (0.40B RMSD), R363C (0.78B RMSD), A778V 

(0.76B RMSD), and R50C (0.78B RMSD). 

Four nsSNPs with the highest RMSD values (R92W, R444L, N730S, and 

S532C) were selected and submitted to I-Tasser for modeling. However, a 

comparative analysis of the results showed that higher-quality protein modeling 

results were obtained using HHPred and AlphaFold2. Therefore, below is a 

comparison of the 3D models of the wild-type and mutant TCIRG1 variants in 

AlphaFold2 - before starting the molecular dynamics simulation (Figure 19), at 50 
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nanoseconds of simulation (Figure 20), and at 100 nanoseconds of molecular 

dynamics simulation (Figure 21). 

Table 11 - TMscore and RMSD values for 34 deleterious nsSNPs in TCIRG1 

nsSNP A.AVariants TM-Score RMSD 

rs371907380 R92W - 0,89 

rs199902030 P572L 0.99626 0.78 

rs200149541 M546V 0.99626 0.78 

rs372499913 I721N 0.99760 0.53 

rs267605221 F610S 0.99312  0.81 

rs374941368 A732T 0.99621 0.78 

rs375717418 F51S 0.99626 0.78 

rs80008675 A717D 0.99661 0.73 

rs149792489 E722K 0.99830 0.46 

rs116675104 R57H 0.99790 0.48 

rs121908250 R109W 0.99626 0.78 

rs121908251 R191H 0.99785  0.49 

rs121908251 S532C 0.99092 0.81 

rs149792489 G192C 0.99626  0.78 

rs116675104 F529L 0.99435 0.58 

rs121908251 G405R 0.99674  0.62 

rs116675104 G458S 0.99674  0.48 

rs121908251 R56P 0.99657 0.48 

rs121908252 R56W 0.99621 0.78 

rs121908254 G379C 0.99435 0.58 

rs147974432 R757C 0.99790 0.48 

rs192224843 N730S 0.99275 0.84 

rs115982879 V375M 0.99743 0.54 

rs139059968 T314M 0.99626 0.78 

rs141125426 D517N 0.99785 0.49 

rs147208835 R92W 0.96213 0.89 

rs147681552 T368M 0.99626 0.78 

rs148498685 A417T 0.99790 0.48 

rs149531418 R363C 0.99626 0.78 

rs149531418 A778V 0.99661 0.76 

rs147208835 R50C 0.99621  0.78 

rs121908250 H804Q 0.99790  0.48 

rs149792489 S474W 0.99760 0.53 

rs121908250 R444L 0.99270 0.84 
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Figure 19 - Overlay of the 3D structures of wild-type (yellow) and mutant type 

(blue) TCIRG1 protein prior to the start of molecular dynamics simulation 

Note: The most deleterious substitutions incorporated into the model are 

highlighted in orange, and the corresponding regions on the wild-type model are 

highlighted in green. 

 

Figure 20 - Overlay of 3D structures of wild-type (yellow) and mutant-type (blue) 

TCIRG1 protein after 50 nanoseconds of molecular dynamics simulation 
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Figure 21 - 3D structures of wild-type (yellow) and mutant (blue) TCIRG1 protein 

during a 100-nanosecond molecular dynamics simulation 

 

Subsequently, these selected mutant types of TCIRG1 were evaluated using 

Schrodinger packages in molecular dynamics simulations. Phyre2 was used to model 

the 3D structures of both the wild-type and mutant types of the ELANE protein. The 

c6o1gA model was chosen as the template for predicting the 3D model of ELANE 

in Phyre2 (Figure 22). The predicted 3D structures of the mutant proteins are shown 

in Figure 23 

 

Figure 22 - Wild-type ELANE protein model generated by Phyre2 
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The I-Tasser program was used for three-dimensional modeling of the 

ELANE protein. The resulting 3D models from I-Tasser were then uploaded to the 

Zhanggroup online service, which provided metrics for comparing the models, 

including the TM-score and root-mean-square deviation (RMSD). 

The mutant model C71Y (based on nsSNP rs28931611) had the highest 

deviation from the wild-type ELANE template, with an RMSD value of 2.05Å. This 

was followed by R34W (rs201163886), F218L (rs200384291), and G214R 

(rs137854451), with RMSD values of 1.98Å, 1.96Å, and 1.12Å, respectively. 

P139L, G203S, and R193W had RMSD values of 0.04Å, 0.49Å, and 0.96Å, 

respectively, indicating no significant structural differences from the wild-type. 

Table 12 shows the TM-scores and RMSD values for the ELANE mutant types. 

 

 

Figure 23 - Overlay of wild-type (blue) and mutant (yellow) ELANE proteins 

including 4 most significant amino acid substitutions: C71R, F218L, R34W, and 

G214R 
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The four nsSNPs with the highest RMSD values (C191Y, G214R, R34W, and 

F218L) were selected and passed into I-Tasser for remodelling and comparison with 

the wild-type structure (Figure 23). The verification results for the wild-type and 

mutant 3D models were satisfactory. These selected ELANE mutant types were 

subsequently used in an in silico experiment for molecular docking screening. 

Table 12 - TM-score and RMSD values for 7 selected nsSNPs in ELANE 

nsSNP A.A.S TM-Score RMSD 

rs28931611 C71Y 0.85993 2.05 

rs201163886 R34W 0.86482 1.98 

rs200384291 F218L 0.87828 1.96 

rs137854451 G214R 0.96114 1.12 

rs201723157 R193W 0.95176 0.96 

rs201139487 G203S 0.99524 0.49 

rs137854448 P139L 0.99994 0.04 

Note: A.A.S - Amino acid substitutions 

4.5 - Evaluation of the interaction of mutated ELANE types by docking 

Docking was visually evaluated using Discovery Studio and PyMol, and 

docking interactions were calculated to identify binding strengths, which were 

decisive in stabilizing the formation of receptor-ligand complexes. The ANH ligand 

was docked into the active site of the wild-type protein as well as four mutant 

proteins. The docking score for the wild-type was -8.4 kJ/mol, and 2D interaction 

showed that the wild-type had two hydrogen bonds with SER202, as well as seven 

van der Waals and seven hydrophobic contacts (Figure 25). The docking score for 

the G214R, R34W, C71Y, and F218L mutations was -9.2, -7.5, -7.1, and -6.8 

kJ/mol, respectively. The 2D interaction for G214R showed two hydrogen bonds 
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with SER202, seven van der Waals, and five hydrophobic interactions. The R34W 

substitution showed two hydrogen bonds with SER202 and VAL219, six van der 

Waals interactions, and eight hydrophobic interactions. One hydrogen bond was 

present in the C71Y mutation with ARG81, four van der Waals, and eight 

hydrophobic interactions. Figure 26 shows the interactions for ELANE with the 

C71Y substitution. Similarly, F218L showed one hydrogen bond with ASN74, six 

van der Waals, and four hydrophobic interactions (Figure 27). Two mutations, 

G214R and R34W, have interactions quite similar to the wild-type. All of them are 

involved in a hydrogen bond with SER202. The other two substitutions, C71Y and 

F218L, have fewer hydrogen bonds, indicating that these two mutations may affect 

the stability and energy of the protein (Figures 24-26). 

Figure 24 - 2D and 3D surface plots of wild-type ELANE with a ligand inside the 

active pocket 
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Figure 25 - 2D and 3D surface graphs of ELANE with C71Y substitution and 

ligand inside the active pocket 

 

Figure 26 - 2D and 3D surface graphs of ELANE with F218L substitution and 

ligand inside the active pocket 

 

4.6 - Molecular dynamic simulation of wild-type and mutant TCIRG1 

During the molecular dynamics simulations in the HHPred program (Figure 

27) and AlfaFold2 (Figure 28), the evolution of the root mean square deviation 

(RMSD) of the alpha-carbon atoms (Cα) in the protein molecule over time was 
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generated. The graph in Figure 28, obtained from HHPred, showed that the protein 

reached stability at 20,000 ps. Subsequently, throughout the simulation time, the 

fluctuation of the RMSD values for the wild type remained within 2.0 angstroms, 

which is acceptable [78]. The RMSD values for the mutant protein fluctuated within 

3.5 angstroms after they had been equilibrated. These results indicate that the mutant 

protein has a higher RMSD throughout the simulation period. On the RMSF plot, 

peaks represent protein parts that oscillate the most during the simulation (Figure 

29). 

 

Figure 27 - Root-mean-square deviation (RMSD) of wild type and mutant Cα 

atoms over time (100 ns) based on HHpred data 

Note: The x-axis represents time in picoseconds (ps), and the y-axis represents 

RMSD in angstroms (Å). 

 

Figure 28 - Root mean square deviation (RMSD) of wild-type and mutant 

TCIRG1's Cα atoms over time (100 ns) according to AlfaFold2 data 

Note: The x-axis represents time in picoseconds (ps), and the y-axis represents 

RMSD in angstroms (Å). 
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Figure 30 shows the total energy of the mutant and wild-type TCIRG1 protein, 

and Figure 31 shows the Van der Waals energy of the wild-type and mutant 

TCIRG1. Protein tails (both N- and C-terminal) usually undergo more significant 

changes than any other part of the protein. Alpha helices and beta sheets, for 

example, are usually more rigid than the unstructured part of the protein and oscillate 

less than loop parts. According to the calculated MD trajectories, residues with large 

peaks belong to loop regions or N- and C-terminal zones. Alpha helices and beta 

sheets are tracked as secondary structure elements (SSE) during modeling. Figure 

32 shows the distribution of secondary structures by residue index for all protein 

structures, and Figure 33 shows the distribution of secondary structure elements over 

the simulated time of 100 ns. All of these results indicate that the stability of the 

mutant TCIRG1 molecule is reduced relative to the wild-type protein. 

 

Figure 29 - Root Mean Square Fluctuation (RMSF) of wild-type TCIRG1 protein 

(left) and mutant TCIRG1 protein (right) 

Figure 30 - Total energy of wild-type and mutant TCIRG1 protein 
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Figure 31 - Van der Waals energy of wild-type and mutant TCIRG1 protein 

 

 

Figure 32 - Percentage of secondary structure elements in wild-type and mutant 

TCIRG1 protein 

 

Figure 33 - Distribution of secondary structure elements during the simulated time 

of 100 ns 

Wild Type TCIRG1  Mutant Type TCIRG1  

Wild Type TCIRG1  Wild Type TCIRG1  
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The majority of significant intramolecular interactions detected using 

molecular dynamics simulations are hydrogen bonds (Figure 34). The time scale 

shows the interactions and contacts. The distribution of atoms in a protein around its 

axis is known as the radius of gyration (Rg). The folding speed of a protein is directly 

related to its compactness, which can be tracked using an advanced computational 

approach to determine the radius of gyration (Figure 35). 

 

Figure 34 - Temporal representation of hydrogen bond interactions and contacts in 

wild-type (A) and mutant (B) TCIRG1 protein 

 

Figure 35 - Radius of gyration of wild-type (A) and mutant (B) TCIRG1 protein 
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We did not perform molecular dynamics simulation and corresponding amino 

acid substitution analysis for the ELANE protein. Only docking was conducted for 

ELANE. This is because the relevance of studying TCIRG1 was justified by having 

the patient's whole-genome data with phenotypic manifestations of congenital 

neutropenia, but with clinical features that raised doubts about the accuracy of the 

diagnosis. After whole-genome sequencing was performed in a commercial 

laboratory, the diagnosis was not confirmed. Therefore, the decision was made to 

apply new methods to identify mutant genes related to the patient's phenotype and 

confirm the diagnosis. 

Analysis of the whole-genome sequencing data revealed several potentially 

significant mutations, but only one was related to neutropenia. Specifically, a non-

synonymous single nucleotide substitution g. 68041789G >C was identified in the 

TCIRG1 gene (amino acid substitution V52L). This substitution was included in the 

list of substitutions analyzed above, allowing for a more justifiable assumption that 

the variant gene found in the patient may have clinical significance. 

Thus, non-synonymous single nucleotide substitutions in the TCIRG1 

(rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, 

rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, 

rs121908251, rs149792489, and rs116675104) and ELANE (rs200384291, 

rs201163886, rs193141883, rs201139487, and rs201723157) genes destabilize the 

protein structure and function. 

4.7 - Investigation of candidate genes in congenital neutropenia 

The first step in searching for or predicting new candidate genes for a 

congenital disease is a review analysis of published information, analysis of 

information in genome and inherited disease databases, as well as a review of genetic 

studies related to the specific disease. 

Simple information search in genetic databases such as OMIM (Online 

Mendelian Inheritance in Man) and HGMD (Human Gene Mutation Database) 

helped identify previously registered mutations leading to diseases, and analysis of 

publications in PubMed suggested the direction of further research. 
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Analysis of protein-protein interactions (PPI) of known genes in congenital 

neutropenia in the human genome was the key to understanding the multigenic 

nature of congenital neutropenia and further identification of candidate genes. 

Using the STRING database, information on protein-protein interactions 

(PPI) was extracted for all known genes in primary immunodeficiencies (PID). Its 

visual representation using Cytoscape software is shown in Figure 36, where genes 

in congenital neutropenia are shifted to the center of the network of interactions. 

This suggested that genes in congenital neutropenia interact more often than random 

PID genes, which is logical, since despite the different genetic cause of congenital 

neutropenias, the phenotypes of different disease variants are similar, and common 

signaling pathways are involved in providing a similar pathogenesis. In congenital 

neutropenia, mechanisms related to regulating the number and functions of 

neutrophils are primarily disrupted. 
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Figure 36 -  Protein-protein interaction network of PID genes (Cytoscape was used 

to visualize the data extracted from the STRING database) 

Note: The known genes of congenital neutropenia are represented by purple 

nodes, while the PID genes are represented by green nodes in the network. 

The figure 37 shows a plot of the functional relationships between known 

genes associated with congenital neutropenia. 
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Figure 37 - A visualized network of protein-protein interactions between known 

genes of congenital neutropenia, extracted from the STRING database (result of 

analysis in Cytoscape) 

 

To further investigate the complex gene interactions in congenital 

neutropenia, the network density of a group of 31 congenital neutropenia genes was 

evaluated and compared with ten random PID groups, each consisting of 41 genes. 

The connectivity and network density of PPI networks in each group were then 

measured and compared using the network density estimation method (network D), 

and our results showed a higher network density in the congenital neutropenia group 

compared to the 10 random groups. These results indicated a strong interaction 

between congenital neutropenia genes (Figure 38). 

We also analyzed the distribution of biological distance between the group of 

known genes associated with congenital neutropenia and two random groups, taking 

into account that a smaller biological distance indicates a stronger association 

between the genes in the group (Figure 39). 
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Figure 38 - Comparison of network density between a group of known congenital 

neutropenia genes and ten random PID gene groups 

 

Figure 39 - Comparison of biological distance in the group of known genes for 

congenital neutropenia and 2 random PID groups 

The results showed that the median density of the distribution of the group of 

known genes associated with congenital neutropenia is 1.067, whereas the median 

density of the distribution of random groups 1 and 2 is around 2.6, indicating a 

stronger functional relationship between the known genes associated with congenital 

neutropenia (Figure 39). 
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We also studied the distribution of biological distance between the group of 

known genes associated with congenital neutropenia and two random groups (a 

smaller biological distance indicates a stronger association between genes in the 

group). The results showed that the median density of the distribution of the group 

of known genes associated with congenital neutropenia was 1.067, while the median 

density of the distribution of random group 1 and random group 2 was about 2.6, 

indicating a closer functional relationship between the known genes associated with 

congenital neutropenia (Figure 39). 

Based on Pearson correlation analysis (PCC) and protein-protein interactions 

provided by Cheng F., et al. (2018) [203], we obtained 4,613 specific gene 

interactions functionally related to congenital neutropenia and 177 candidate genes. 

Using KEGG data, we conducted functional enrichment analysis of known 

congenital neutropenia genes by linking the genes in the list to their biological 

functions. Our KEGG pathway analysis revealed five statistically significant 

signaling pathways (p<0.05), such as cytokine-cytokine receptor interaction, 

chemokine signaling pathways, and others (Figure 40). 

We searched for specific candidate genes that are functionally similar to 

known congenital neutropenia genes and enriched in at least one of the 

aforementioned five KEGG pathways. Thus, we identified 15 new candidate genes 

for congenital neutropenia: STAT1, STAT2, STAT3, STAT5B, LYN, FGR, SRC, 

PIK3CG, ITK, VAV1, CDC42, PTK2, CRKL, PLCG1, and ARRB2. 

Figure 41 shows the PPI network of known congenital neutropenia genes and 

candidate genes. Functional enrichment analysis of congenital neutropenia genes, 

including the 15 candidate genes, showed a total of 15 statistically significant 

signaling pathways described in the KEGG database (e.g., Epstein-Barr virus 

infection, cytokine-cytokine receptor interaction, and B-cell receptor signaling 

pathway). 
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Figure 40 - Analysis of functional enrichment of candidate genes for congenital 

neutropenia based on the KEGG database 

 

Figure 41 - Protein-protein interaction network of known and candidate genes 

associated with congenital neutropenia (Cytoscape) 
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Biological distances between the 15 candidate genes involved in congenital 

neutropenia were assessed and compared to the biological distances of 31 known 

genes involved in congenital neutropenia. As a result, the mean biological distance 

of the candidate genes was 6.08, which was lower (or equivalent) than that of the 

known genes involved in congenital neutropenia. This indicates that the candidate 

genes for congenital neutropenia have comparable strong biological connections 

(Figure 42). 

 

Figure 42 - Density plot of biological distances between known genes involved in 

congenital neutropenia and predicted candidate genes 

 

Then the candidate gene for congenital neutropenia was mixed with known 

congenital neutropenia genes, and the biological distance of the mixed gene was 

determined again. Then the mixed genes were subjected to phylogenetic analysis 

FGA to determine the biological relatedness between the congenital neutropenia 

genome and the candidate congenital neutropenia genome. The results showed that 

the candidate genes for congenital neutropenia were evenly distributed across the 

range of known congenital neutropenia genes, implying their close association with 

known congenital neutropenia genes (Figure 43). 
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Figure 43 - Phylogenetic tree of biological distances generated by FGA showing 

hierarchical clustering of all known congenital neutropenia genes (blue) and 

predicted congenital neutropenia genes (red) 

Note: the length of the branch indicates the strength of the separation between 

subjects 

 

In addition, a diagram of the interrelationships between the candidate genes 

for congenital neutropenia and their associated signaling pathways was formed using 

KEGG through functional enrichment analysis (Figure 44). 
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Figure 44 - Chord diagram of candidate genes for congenital neutropenia and their 

associated signaling pathways (based on KEGG data) 

Assessment of gene expression differences in peripheral blood neutrophils of 

patients allowed for a search for new candidate genes from a different perspective, 

confirming our preliminary findings. 

In the GSE142347 dataset, the expression of 1327 genes was significantly 

different in peripheral blood neutrophils of patients with congenital neutropenia 

compared to healthy controls, with 739 genes upregulated and 558 genes 

downregulated in expression. In the GSE6233 dataset, 573 genes were found to have 

significant differential expression in B-cells of patients with congenital neutropenia 

compared to control samples, with 274 genes upregulated and 299 genes 

downregulated in expression (Figure 45). 
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Figure 45 - Volcano plot of differentially expressed genes in samples from the 

GSE6322 (left) and GSE142347 (right) datasets 

Note: light red dots are presenting upregulated light blue are downregulated while 

light darkish dots are showing not significant difference 

In addition, comparison of genes with increased expression in neutrophils 

from peripheral blood and B cells from patients with congenital neutropenia 

identified 1 common gene, while comparison of genes with decreased expression in 

neutrophils from peripheral blood and B cells from patients with congenital 

neutropenia identified 7 common genes with reduced expression relative to control 

samples (Figure 46). This effectively indicated the identification of common 

transcriptomic features of neutrophils and B cells in patients with congenital 

neutropenia. 

Some of the known PID genes also showed significant differences in 

expression. In the GSE6233 dataset, 10 genes had increased expression and 7 had 

decreased expression. In the GSE142347 dataset, 3 genes were increased and 18 

were decreased in expression. The genes with increased expression in GSE6233 

were LAMTOR2, SmarCD2, CD81, ZBTB24, ACTB, CASP10, APOL1, PARN, 

ITGB2, and IRF3. The genes with increased expression in the GSE142347 dataset 

were SEC61A1, MASP2, and RAD51. Among the genes with decreased expression 

in the GSE6233 dataset were SEC61A1, MTHFD1, STIM1, EXTL3, TGFBR1, 

light red dots are presenting upregulated light 

light blue dots are downregulated 

light darkish dots are showing not significant 

difference 
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CEBPE, and HAX1. The genes with decreased expression in the GSE142347 dataset 

were PTPRC, RAC2, BRCA1, PRF1, FCGR3A, ACTB, COPA, IL2RG, MSN, 

IKZF1, KDM6A, CD55, AP1S3, NFKB1, WDR1, JAK1, IFIH1, and RAD51C. All 

known and candidate genes for congenital neutropenia, except CXCR4, LAMTOR2, 

STAT1, and STAT2, were almost more highly expressed in patients with congenital 

neutropenia than in control samples (Figure 47). 

 

 

 

Figure 46. Venn diagrams of overlapping highly and lowly expressed genes in 

congenital neutropenia in different cell types 

We conducted a quality control study by examining some studies after 

identifying new candidate genes. In particular, ten candidate genes for congenital 

neutropenia (STAT1, STAT2, STAT3, STAT5B, LYN, FGR, SRC, PIK3CG, ITK, 

VAV1, CDC42) that were not included in our initial list of congenital neutropenia 

genes obtained from ESID, but predicted by us, were found in clinical cases of 

congenital neutropenia. This demonstrates the significance of the identified 

candidate genes for congenital neutropenia (Table 13). 



130 
 

 

Figure 47 - Heatmap of differentially expressed known and candidate genes in 

congenital neutropenia 

Note: High expression is shown in light yellow color, low expression is 

indicated by black-purple color. 
 

Table 13 - Candidate genes for congenital neutropenia with recently reported 

associations with congenital neutropenia 

Gene 

Symbol 

Description Common pathways and 

main role 

Main effect on 

neutrophils due the 

Ref. 

CDC42 Cell Division Cycle 42 protein, 

responsible for cell morphology, 

cell cycle, and in particularly actin 

polymerization in N-WASP 

ATP-binding component 

of the Arp2/3 complex 

through the WASP 

Actin polimerisation 

and phagocytosis 
PMID: 19082760  

PMID: 21178275 

PMID: 10360578 

PMID: 34425130  
CRKL Crk Like Proto-Oncogene, 

Adaptor Protein. CrkL binds to 

WASP protein 

ATP-binding component 

of the Arp2/3 complex 

through the WAVE 

Actin polimerisation 

and phagocytosis 
PMID: 11313252 

PMID: 22837718 

PMID: 12504004 

PMID: 23934128 
FGR Src family of protein tyrosine 

kinase 

Tyrosine Kinases / 

Adaptors and Regulatio

n of actin dynamics for 

phagocytic cup 

formation. 

G-CSF 

Neutrophil regulation 
PMID: 1895577 

PMID: 8634424 

https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/regulation_of_actin_dynamics_for_phagocytic_cup_formation
https://pathcards.genecards.org/card/regulation_of_actin_dynamics_for_phagocytic_cup_formation
https://pathcards.genecards.org/card/regulation_of_actin_dynamics_for_phagocytic_cup_formation
https://pathcards.genecards.org/card/regulation_of_actin_dynamics_for_phagocytic_cup_formation
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SRC proto-oncogene tyrosine-protein 

kinase Src 

 Cytokine Signaling in 

Immune 

system and PEDF 

Induced Signaling. 

G-CSF PMID: 16772601 

LYN Src Family Tyrosine Kinase 

involved in the regulation of cell 

activation 

Antigen sygnaling 

transduction 

Initiation of the B-cell 

response, B-cell 

differentiation 

PMID: 10643150 

PMID: 23001182 

PMID: 19201855 
PLCG1 phospholipase C gamma 1, plays 

an important role in the 

intracellular transduction of 

receptor-mediated tyrosine kinase 

activators, has role in neutrophil 

extracellular trap formation  

NGF 

Pathway and CCR5 

Pathway in 

Macrophages. 

 PMID: 29543328 

(?) 

ARRB2 Arrestin beta 2  Cytokine Signaling in 

Immune 

system and Tyrosine 

Kinases / Adaptors. 

IL8-mediated granule 

release in neutrophils 
PMID: 24657625 

PIK3CG Phosphatidylinositol-4,5-

Bisphosphate 3-Kinase Catalytic 

Subunit Gamma 

 NF-kappaB Pathway, 

Immune response CCR3 

signaling in eosinophils. 

Together with 

PIK3CD participates 

in neutrophil 

respiratory burst. 

Together with 

PIK3CD is involved in 

neutrophil chemotaxis 

and extravasation 

PMID: 29233821 

PMID: 29191916 

PMID: 31964785 

PTK2 Protein Tyrosine Kinase 2   NF-kappaB 

Pathway and  

Cytokine Signaling in 

Immune system 

- A question about 

glycogen storage 

disease 1b 

STAT1 Signal transducer and activator of 

transcription 1 

Peginterferon alpha-

2a/Peginterferon alpha-

2b Pathway 

(Hepatocyte), 

Pharmacodynamics 

 Cytokine Signaling in 

Immune system 

Role in immune 

responses 
PMID: 27879260 

PMID: 29202461 

PMID: 33344614 

PMID: 27222657   

 

STAT2 Signal transducer and activator of 

transcription 2 

Peginterferon alpha-

2a/Peginterferon alpha-

2b Pathway 

(Hepatocyte), 

Pharmacodynamics 

Immune response IFN 

gamma signaling 

pathway 

Act as transcription 

activators 
PMID: 27881648 

PMID: 27713294 

 

STAT3 Signal transducer and activator of 

transcription 3 (acute-phase 

response factor) 

 Cytokine Signaling in 

Immune system 

IL-4 Signaling 

Pathways. 

G-CSF, 

Maturation of immune 

system cells, 

especially T cells and 

B cells 

PMID: 29330115 

PMID: 28253502 

STAT5B Signal Transducer And Activator 

Of Transcription 5b 

Cytokine Signaling in 

Immune system and IL-

4 Signaling Pathways. 

Granulocyties 

differentiation  
PMID: 29160632 

PMID: 33255665 

PMID: 24512550 

PMID: 31585621  
VAV1 Vav Guanine Nucleotide 

Exchange Factor 1 

Cytokine Signaling in 

Immune 

system and Developme

nt Dopamine D2 

receptor transactivation 

of EGFR 

Cell differentiation T-

cell and B-cell 

development and 

activation 

PMID: 12874226 

PMID: 31456807 

PMID: 10879282 

 

ITK IL2 Inducible T Cell Kinase  Tyrosine Kinases / 

Adaptors and T-Cell 

Receptor and Co-

stimulatory Signaling.  

 Regulates the 

development, function 

and differentiation of 

conventional T-cells 

and nonconventional 

NKT-cells 

PMID: 32306816 

PMID: 34365077 

PMID: 34368657 

PMID: 33007409 

PMID: 32049330 

 

Continue table 13 

https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/pedf_induced_signaling
https://pathcards.genecards.org/card/pedf_induced_signaling
https://pathcards.genecards.org/card/ngf_pathway
https://pathcards.genecards.org/card/ngf_pathway
https://pathcards.genecards.org/card/ccr5_pathway_in_macrophages
https://pathcards.genecards.org/card/ccr5_pathway_in_macrophages
https://pathcards.genecards.org/card/ccr5_pathway_in_macrophages
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/nf-kappab_pathway
https://pathcards.genecards.org/card/immune_response__ccr3_signaling_in_eosinophils
https://pathcards.genecards.org/card/immune_response__ccr3_signaling_in_eosinophils
https://pathcards.genecards.org/card/nf-kappab_pathway
https://pathcards.genecards.org/card/nf-kappab_pathway
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/peginterferon_alpha-2apeginterferon_alpha-2b_pathway_(hepatocyte)_pharmacodynamics
https://pathcards.genecards.org/card/immune_response_ifn_gamma_signaling_pathway
https://pathcards.genecards.org/card/immune_response_ifn_gamma_signaling_pathway
https://pathcards.genecards.org/card/immune_response_ifn_gamma_signaling_pathway
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
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https://pathcards.genecards.org/card/il-4_signaling_pathways
https://www.ncbi.nlm.nih.gov/pubmed/29330115
https://www.ncbi.nlm.nih.gov/pubmed/28253502
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/il-4_signaling_pathways
https://pathcards.genecards.org/card/il-4_signaling_pathways
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/cytokine_signaling_in_immune_system
https://pathcards.genecards.org/card/development_dopamine_d2_receptor_transactivation_of_egfr
https://pathcards.genecards.org/card/development_dopamine_d2_receptor_transactivation_of_egfr
https://pathcards.genecards.org/card/development_dopamine_d2_receptor_transactivation_of_egfr
https://pathcards.genecards.org/card/development_dopamine_d2_receptor_transactivation_of_egfr
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/tyrosine_kinases__adaptors
https://pathcards.genecards.org/card/t-cell_receptor_and_co-stimulatory_signaling
https://pathcards.genecards.org/card/t-cell_receptor_and_co-stimulatory_signaling
https://pathcards.genecards.org/card/t-cell_receptor_and_co-stimulatory_signaling
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In conclusion, of this cheapter, 15 candidate genes for congenital neutropenia have 

been identified that may influence neutrophil functions: STAT1, STAT2, STAT3, 

STAT5B, LYN, FGR, SRC, PIK3CG, ITK, VAV1, CDC42, PTK2, CRKL, PLCG1, 

ARRB2. The identified missense variants for TCIRG1 and Elane gene contain 

scientific and clinincal importans. 
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CHAPTER 5 - IDENTIFICATION OF NEW MISSENSE MUTATIONS IN 

THE CCBE1, FAT4, AND ADAMTS3 GENES LEADING TO HENNEKAM 

SYNDROME 

 

The aim of the study was to investigate the potential pathogenicity of novel 

missense substitutions in the CCBE1, FAT4, and ADAMTS3 genes identified in the 

NCBI dbSNP databases, as well as single nucleotide non-synonymous substitutions 

in the FAT4 gene found in a patient diagnosed with Hennekam syndrome, on the 

structure and function of the proteins. We then selected the most probable 

deleterious substitutions in these genes and assessed their impact on protein structure 

and function by incorporating the substitutions into the wild-type protein structure 

using molecular dynamics simulations. 

5.1 - Identification of deleterious nsSNPs in the FAT4, ADAMTS3, and 

CCBE1 genes leading to the development of Hennekam syndrome 

In total, 407 nsSNPs in the CCBE1 gene were assessed for their impact on 

protein structure and function. Of the 407 nsSNPs, 23 were identified as deleterious 

by both SIFT and PolyPhen-2 programs. Information on the minor allele frequency 

(MAF) was available for 11 nsSNPs. With the exception of T153N, G107D, P249S, 

S19N, C75S, C102S, G327R, C174R, D397Y, R125W, P87W, and G330E, the 

calculated frequency of other nsSNPs in the population was less than 1% (Table 14). 

Subsequently, all 23 selected nsSNPs were analyzed using an additional 16 

bioinformatics tools for predicting the deleteriousness of substitutions on protein 

structure and function (Table 15, Figure 48). 

Table 14 - Non-synonymous single nucleotide substitutions in the CCBE1 

gene assessed by SIFT and PolyPhen2 as deleterious 

nsSNP A.A  SIFT Score PolyPhen-2 Score MAF 

rs199902030 D336N Del 0.003 Prob damage 1 < 0.001 (T) 

rs200149541 T153N Del 0.001 Prob damage 1  
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nsSNP A.A  SIFT Score PolyPhen-2 Score MAF 

rs372499913 G107D Del 0 Prob damage 1  

rs267605221 P249S Del 0.007 Prob damage 1  

rs374941368 S19N Del 0.004 Prob damage 0.981  

rs375717418 R301W Del 0.004 Prob damage 1 < 0.001 (T) 

rs80008675 D41E Del L 0.016 Prob damage 0.982 0.017 (T) 

rs116596858 P181S Del L 0.007 Prob damage 0.906 < 0.001 (A) 

rs116675104 R167W Del L 0.017 Prob damage 0.990 0.003 (A) 

rs121908250 C75S Del L 0.002 Prob damage 0.981  

rs121908251 C102S Del L 0 Prob damage 0.999  

rs121908252 G327R Del 0 Prob damage 1  

rs121908254 C174R Del 0.001 Prob damage 0.984  

rs147974432 T144M Del L 0.002 Prob damage 1 < 0.001 (A) 

rs192224843 Q353R Del 0.011 Prob damage 0.993 < 0.001 (C) 

rs115982879 R118L Del L 0.001 Prob damage 0.910 < 0.001 (T) 

rs139059968 K355T Del 0.002 Prob damage 0.883 < 0.001 (G) 

rs141125426 D397Y Del L 0.002 Prob damage 0.828  

rs147208835 R125W Del L 0 Prob damage 0.995  

rs147681552 P290L Del 0.005 Prob damage 1 < 0.001 (A) 

rs148498685 P87S Del L 0.002 Prob damage 1  

rs149531418 G330E Del 0 Prob damage 0.999  

rs149792489 A96G Del L 0.004 Prob damage 1 < 0.001 (C) 

Note. Substitution - amino acid substitution in a protein; Del - damaging 

substitution, Del L - likely less damaging substitution, Prob damage - probably 

damaging substitution. MAF - minor allele frequency. 

 

Continue table 14 



135 
 

 

Figure 48 - Results of predicting the effects of identified nsSNPs in the CCBE1 

gene analyzed by eighteen computational tools 

For the ADAMTS3 gene, 919 nsSNPs were tested. Only 50 out of the 919 

nsSNPs were selected by the SIFT program as fully deleterious, and these 50 were 

then analyzed by several tools (Figure 48). Information on minor allele frequency 

(MAF) is available for 16 of them, while MAF of other nsSNPs may be less than 

1%. 

The visual representation of the results of filtering ADAMTS3 gene nsSNPs 

through 19 bioinformatics tools for predicting the pathogenicity of substitutions 

(including SIFT and Polyphen-2) is presented in Figure 49. All prediction methods 

provided statistically significant results. The p-value for the Student's t-test was 

0.001 for all tools. 

 

     Deleterious/Damaging 

     Tolerated/Neutral 

     No data 



Table 15 - Verification of pathogenicity of 23 identified nsSNPs in the CCBE1 gene by other tools 

Note: A.A – amino acid substitution in the molecule; the following columns – mutation pathogenicity prediction programs. 

D – damaging substitution, T – tolerant; N – neutral; L – low, M – moderate, H – high probability of pathogenicity; P – pathogenic, 

E – effect. 

A.A LRT Mutation 

Taster 

Mutation 

Accessor 

PROVEAN FATHMM VEST3 MetaL

R 

M-

CAP 

CADD DANN FATHMM-

MKK 

PhD-SNP PANTHER SNP-GO SNAP2 

G330E D D H D D D D D D D D D D D E 

C102S D D M D D D D D D D D D D D E 

C174R D D H D D D D D D D D D D D E 

G107D D D L D D D D D D D D D D D E 

R125W D D L D D T D D D D D D D N E 

G327R D D H D D D D D D D D N D N E 

P290L D D M D T D D D D D D N D N E 

K355T D D M N D D D D D D D D D N E 

Q353R D D M N D D D D D D D D D N E 

D336N D D M N D T D D D D D D D N E 

T153N D D M N D T D D D D D D D N E 

C75S D D L D D D D D D T D N  D N E 

P87S D D L N D D D D D D D D D N E 

T144M D D L N D D D D D D D N D N E 

R118L D D L D D D T D D D D D D N E 

D397Y N D M D D T D D D T D D D N E 

R301W D D M D T D T D D D D N D N E 

P249S D D M N T T D D D D D N D N N 

D41E D P L N D T T D D T D D D N N 

S19N N P L N D T D D D D D N D N N 

R167W N D L N D T D D D D D N N N E 

A96G D D L N T D T D D D D N D N N 

P181S N D L N T D T D D T D N N N N 
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Figure 49 - Results of predicting the impact of identified nsSNPs in the 

ADAMTS3 gene analyzed by 19 bioinformatics tools for predicting the 

pathogenicity of mutations (including SIFT and Polyphen-2) 

For the FAT4 gene, out of 3434 nsSNPs, SIFT and PolyPhen-2 predicted a 

total of 298 harmful or damaging nsSNPs. Only 70 nsSNPs had minor allele 

frequency (MAF) information available. Except for the substitutions G4361, S4710, 

A785, G1822, D1124N, R2285, R3128, R4726, H1513, S2098, A2959, T1914, 

V543I, R2285, K294R, and G412, other MAFs for nsSNPs in the FAT4 gene had a 

value of less than 1%. After applying 18 different bioinformatics tools to predict the 

pathogenicity of substitutions, only 11 nsSNPs - D2978G, V986D, Y1912C, 

R4799C, D1022G, G4786R, D2439E, E2426Q, R4643C, N1309I, Y2909H - were 

considered high-risk polymorphisms that could affect the structure and function of 

FAT4, even though SIFT considered all 11 substitutions to be damaging with low 

probability (above >0.5, but below <0.8 on the SIFT scale) (Table 16-17, Figure 50). 
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  Deleterious/Damaging 

 Tolerated/Neutral 

  No data 



Table 16 - Verification of the pathogenicity of 11 identified nsSNPs in the FAT4 gene using other in-silico tools 

AAS Mutation 

Taster 

Mutation 

Accessor  

FATH

MM 

PROVEAN VEST3 MTA 

SVM 

METALR M-

CAP 

CADD DANN FATHMM-

MKK 

PhD-

SNP 

PANTHER SNP-

GO 

SNAP2 P-

Mut 

D2978G D M T  D D D D D D D D D D D D D 

V986D D H D D D D D D D D D D B D D D 

Y1912C D M T D D D D D D D D D D D D D 

R4799C D L D D D D D D D D D D D N D D 

D1022G D H T D D D D D D D D D D D N D 

G4786R D L D D D D D D D D D D D N D D 

D2439E D M T D D D D D D D D D D N D D 

E2426Q D H T D D D D D  D D D D D D N D 

R4643C D L D D D D D D D D D D D D D N 

N1309I D H T D D D D D D D D D D D N D 

Y2909H D H T D D D D D D D D D D D N D 

Note. Substitution - amino acid substitution in the protein; D - damaging substitution; N - neutral; L - low, M - medium, H - 

high probability of pathogenicity; B - benign substitution. 

Table 17 - Assessment of the filtered 11 nsSNPs in the FAT4 gene and their minor allele frequency in the population. 

nsSNP AAS SIFT Score PolyPhen-2 Score MAF 

rs147663284 D2978G Del-Low 0.005 Prob-Damaging  0.99  

rs192514171 V986D Del-Low 0 Prob-Damaging  1.00  

rs138137489 Y1912C Del-Low 0.001 Prob-Damaging  1.00  

rs199895179 R4799C Del-Low 0 Prob-Damaging  1.00 <0.001 (T) 

rs372060616 D1022G Del-Low 0 Prob-Damaging  1.00  

rs138173652 G4786R Del-Low 0 Prob-Damaging  1.00 <0.001(A) 

rs142184187 D2439E Del-Low 0 Prob-Damaging  0.99  

rs147633644 E2426Q Del-Low 0 Prob-Damaging  1.00  

rs181607904 R4643C Del-Low 0 Prob-Damaging  1.00 <0.001 (T) 

rs184971791 N1309I Del-Low 0 Prob-Damaging  0.99  

rs148655455 Y2909H Del-Low 0 Prob-Damaging  1.00  
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Figure 50 - Results of predicting the impact of identified nsSNPs in the FAT4 

gene, analyzed by 18 bioinformatics tools for predicting the pathogenicity of 

mutations (after filtering by SIFT and Polyphen-2) 

5.2 - Prediction of protein stability including non-synonymous 

substitutions in the genes FAT4, ADAMTS3, and CCBE1, identified in the 

previous stage 

To analyze the stability prediction of CCBE1, the web tool iStable 2.0 was 

used. This web tool consists of 11 sequence- and structure-based prediction tools, 

and machine learning approach is used for all results. The results showed that 

substitutions G330E, C174R, G327R, P290L, D41E, A96G, T114M, D397Y, S19N, 

and Q359RT increase stability, while amino acid substitutions P249S, R167W, 

R301W, C75S, P87S, R118L, T153N, D336N, R125W, K355T, G107D, and C102S 

decrease the stability of the CCBE1 protein. No data could be obtained for the 

substitution P181S in the iStable 2.0 program.  
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Table 18 - Predictions of iStable 2.0 on the stability of the CCBE1 protein, 

taking into account the identified amino acid substitutions 

AAS Realibality score Impact on Protien 

G330E -0.002680719 Increase 

C174R 0.021838337 Increase 

C102S -1.2213084 Decrease 

G107D -0.86388123 Decrease 

R125W -0.85255766 Decrease 

G327R 0.0042461157 Decrease 

P290L 0.2298831 Decrease 

K355T -0.052274585 Increase 

Q353R 0.8725257 Increase 

D336N -1.2082165 Decrease 

T153N -0.546193 Decrease 

C75S -1.0542232 Decrease 

P87S -1.9976869 Decrease 

T144M 0.23297998 Increase 

R118L -0.5704589 Decrease 

D397Y 0.071232796 Decrease 

R301W -0.3441298 Decrease 

P249S -1.1325055 Decrease 

D41E 0.4703572 Increase 

S19N 0.77003396 Increase 

R167W -0.4350294 Decrease 

A96G -0.041893244 Increase 

 

The programs I-Mutant 3.0 and MUpro were used to evaluate 50 nsSNPs with 

high risk of affecting the stability of the ADAMTS3 protein. The protein stability 

disruption prediction (ΔΔG) in I-Mutant 3.0 showed that 47 nsSNPs decrease 

stability (ΔΔG < 0) while 3 nsSNPs increase stability (ΔΔG > 0). MUpro identified 

48 nsSNPs that individually decrease protein stability. Variants with substitutions of 
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S1038F, S58F, and D791V (as per I-Mutant) as well as R576L, R954H, and G412S 

(as per MUpro) were identified as increasing protein stability. Calculations showed 

that the structure and function of the protein would be disrupted by 19 variations, 

which included V395I, A336V, G298R, Q616H, Q927H, S1038F, G374S, D815Y, 

R94L, G983S, Q588H, G25H, R565W, R817C, R713L, R55L, N98S, Y636S, 

R576L, R1053C, D791V, G412S, and L801F. All of these variants showed ΔΔG 

values less than -1 kcal/mol as determined by these two tools. 

Using the same tools, I-Mutant 3.0 and MUpro (by comparing free energies), 

the impact of the 11 nsSNPs identified in the FAT4 gene on the stability of the 

corresponding protein was evaluated (Table 19). 

Table 19 - Prediction of the impact of identified amino acid substitutions on 

the stability of the FAT4 protein (using I-Mutant 3.0 and MUpro) 

AAS Stablity on Protien AAS Stablity on Protien 

D2978G Decrease D2439E Decrease 

V986D Decrease E2426Q No data 

Y1912C Decrease R4643C Decrease 

R4799C Decrease N1309I Decrease 

D1022G No data Y2909H Decrease 

G4786R Decrease   

 

5.3 - Analysis of the preservation of identified substitutions in 

conservative regions of CCBE1, ADAMTS3, and FAT4 proteins 

An investigation of the effect of 23 substitutions in the CCBE1 gene on the 

CCBE1 protein using the ConSurf service showed that 13 substitutions were located 

in highly conserved regions of the protein. Eleven of them (C75S, P87S, P290L, 

A96G, G107D, R118L, G330E, D336N, R125W, Q353R, and T153N) were 

predicted to be functional and exposed residues, while the other two, C102S and 

C174R, were predicted to be buried and structural amino acid residues. The 

substitution S19N was predicted to be a conservative and buried residue, while the 
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remaining eight (T144M, R167W, P249S, R301W, G327R, K355T, D397Y, and 

D41E) were predicted to be exposed amino acid residues (on the surface of the 

protein). The results are shown in Figure 51. 

 

Figure 51 - Location of amino acid substitutions in the CCBE1 protein with 

consideration of evolutionary conservation and the location of different protein 

regions according to the ConSurf service 

Note: A value of 1 indicates a highly variable region, while 9 indicates the 

most evolutionarily conserved region. 

 

A similar study was conducted for ADAMTS3 and the identified 50 nsSNPs. 

Twenty-six out of the 50 missense variants were identified as located in highly 

conserved regions. Nineteen out of 26 (Q927R, G298R, C567Y, C567R, Q616H, 
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R565W, R565Q, P371S, P513T, R248H, T668M, R435H, N98S, R883C, G412S, 

L801F, S1038F, G983S, R959W) were expected to be functional and exposed 

residues, while the remaining 7 (I291T, V395I, A336V, G374S, S58F, I287F, and 

A370T) were expected to be buried and structural residues. In addition, conserved 

and buried residues were shown to have substitutions at F81L, Y148C, R435H, 

Y536C, M731T, F777L, R94L, R270H, P510A, R572C, R572H, Q588H, R713L, 

R817C, R943H, and R954H. Furthermore, eight substitutions were located on the 

surface (G25V, R55L, P77T, R137W, Y636C, D791V, D815Y, and R1053C). 

Among the 11 nsSNPs with high risk of pathogenicity, 7 (D1022G, N1309I, 

D2439E, E2426Q, R4799C, G4786R, and R4643C) were predicted to be functional 

and exposed residues, while the remaining 3 (V986D, Y1912C, Y2909H) were 

expected to be buried (Figure 52). 

For the FAT4 protein, ConSurf showed that many of the amino acid 

substitutions previously identified as having a high impact risk on the protein were 

located in highly conserved regions. Seven out of 11 nsSNPs (at positions 1022, 

1309, 2439, 2426, 4799, 4786, and 4643) were expected to be functional and 

exposed residues, while the remaining were considered to be buried. The substitution 

of G4786R was considered as structurally buried amino acid residue, while the 

substitution of G298 affected an exposed region of the protein. Due to its size, no 

image is provided for the FAT4 protein. 
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Figure 52 - Location of amino acid substitutions in the ADAMTS3 protein with 

consideration of evolutionary conservation and location of different protein regions 

according to the ConSurf service  

Note: a value of 1 indicates a high variability region, while 9 indicates the 

most evolutionarily conserved region. 
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5.4 - 3D modeling of wild-type and mutant CCBE1 protein structures 

To model the 3D structures of the wild-type CCBE1 protein and 22 mutant 

types, Phyre2 was used to predict the 3D structures of the mutant proteins. The 

model c5to3B was chosen as a template for predicting the 3D model of CCBE1 in 

Phyre2. The model for the R118L (rs115982879) mutant showed the greatest 

deviation, with an RMSD value of 1.56B, followed by A96G (rs149792489), S19N 

(rs374941368), and C174R (rs121908254) with RMSD values of 1.50B, 1.44B, and 

1.46B, respectively. R125W, C75S, and T153N showed RMSD values of 0.89B, 

0.90B, and 0.85B, respectively, indicating no structural changes compared to the 

wild-type. Other amino acid substitutions showed little effect on the 3D structure of 

CCBE1. These were G327R (1.36B RMSD), P290L (1.3.6B RMSD), Q353T 

(1.3.2B RMSD), P290L (1.25B RMSD), D336N (1.25B RMSD), C102R (1.22B 

RMSD), R167W (1.16B RMSD), P87L (1.14B RMSD), G107D (1.13B RMSD), 

T144M (1.13B RMSD), G330R (1.12B RMSD), D41E (1.12B RMSD), D297Y 

(1.06B RMSD), R301W (1.02B RMSD), and K355T (1.01B RMSD). The TM 

coefficients and RMSD values are presented in Table 16. The four nsSNPs (R118L, 

A96G, S19N, and C174R) with the highest RMSD values were selected and 

submitted to I-TASSER for remodelling. The protein structure obtained using I-

TASSER is the most reliable as it is the most modern modelling tool. Each of these 

three mutants was studied and superimposed on the wild-type CCBE1 protein using 

Chimera 1.11, as shown in Figure 53. 
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Figure 53 - (A) Structure of wild-type CCBE1 protein. (B) Superimposed structure 

of CCBE1 and its C174R mutant. (C) Superimposed structure of CCBE1 and its 

A96G mutant. (D) Superimposed structure of CCBE1 and its R118L mutant. 

Visualization of Phyre2 model results in Chimera 1.11 program 

We conducted an assessment of ligand binding sites using FTSite, i.e., the 

analysis of protein CCBE1 docking and the evaluation of the impact of identified 

single nucleotide polymorphisms (SNPs) on docking. Ligand binding sites were 

predicted using FTSite algorithms, visualized, and further analyzed using PyMOL. 

With this tool, three ligand binding sites were identified in human CCBE1 protein. 

Site 1 consisted of 14 amino acid residues; site 2 and site 3 consisted of 7 and 5 

residues, respectively. Some of the 22 amino acid substitutions predicted by the 

SIFT server as potentially deleterious were localized in the presumed ligand binding 
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sites (T153N and R167W). These results were not further utilized but were published 

and provided in additional files to the publication on this topic. 

A set of various software programs was used to predict post-translational 

modifications. Specifically, GPS-MSP 3.0 showed the absence of methylation sites 

in CCBE1. Programs GPS 3.0 and NetPhos 3.1 predicted phosphorylation sites in 

CCBE1, regions with potential for phosphorylation. BDM-PUB and UbPred were 

used to predict ubiquitination. In particular, BDM-PUB predicted the ubiquitination 

of 11 lysine residues. The NetOGlyc4.0 program was used to predict potential 

glycosylation sites and loss of glycosylation in certain regions due to the described 

substitutions. These results were not further utilized but were published and 

provided in additional files to the publication on this topic. 

5.5 - 3D Modeling of ADAMTS3 Protein Structures of Wild-Type and 

Mutant Types 

The structures of wild-type and mutant types of ADAMTS3 were predicted 

using AlphaFold 2. Visualization was performed using Chimera 1.3. In modeling 

the mutant structure, 25 mutations were included. 21 of these mutations, including 

S58F, I291T, G298R, A336V, A370T, P371S, G374S, G412S, R435H, Y536C, 

R565W, C567R, R572C, R576L, Q616H, Y636C, T668M, R883C, R954H, 

R959W, and G983S, were confirmed by several programs as deleterious (C567Y 

was not included because it occupies the same position as C567R), and four of them 

(R138K, R574C, C578L, and Q606H) were found to be clinically relevant. The 

wild-type and mutant models were validated by Ramachandran plots and analysis of 

all-atom contacts using the MolProbity program. The wild-type model shows 1032 

residues (85.8%) in the favored region, 77 (6.4%) in the allowed region, and 94 

(7.8%) in the outlier region, with a total of 1109 residues (92.2%) in the favored and 

allowed regions. The mutant model shows 1008 residues (83.8%) in the favored 

region, 110 (9.1%) in the allowed region, and 85 (7.1%) in the outlier region, with a 

total of 1118 residues (92.9%) in the favored and allowed regions. 
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For all-atom contact analysis using MolProbity, the wild-type protein showed 

a score of 3.61, while the mutant protein showed a score of 1.88, which is an 

acceptable value. 

The structures can be divided into three segments (segment 1: Met1-Pro466; 

segment 2: Lys467-Val831; segment 3: Pro832-Arg1205), which are connected by 

loops (Figure 54). Segment 3 of both proteins consists mainly of loops without many 

secondary structures, so we consider it an inaccurate prediction and ignore it for 

further analysis. 

 

Figure 54 - Segmented structure of the ADAMTS3 protein using the example of 

the wild-type molecule: segment 1 (residues 1-466), segment 2 (residues 467-831), 

and segment 3 (residues 832-1205). These three segments are connected by loops. 

Segment 3 consists mainly of loops (result of the AlphaFold2 model visualization 

in the Chimera 1.3 software) 

 

We mainly focused on segments 1 and 2, which contain extensive secondary 

structures. We assume that there are minor interactions between segments, so 

mutations in one segment will not have a significant impact on the other. The 

superimposition of the wild type and mutant ADAMTS3 structures (Figure 55) 

shows an RMSD value of 30.367 Å. 
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Figure 55 - Overlapping structures of wild type and mutant ADAMTS3 

(visualization result of the model from AlphaFold2 in the Chimera 1.3 program) 

In order to assess the impact of high-risk pathogenic amino acid substitutions 

on ligand binding sites, docking analysis of mutant types of ADAMTS3 was 

performed. Binding sites of ADAMTS3 protein were predicted using the RaptorX 

Binding server (with a pocket multiplicity value of more than 40) and the COACH 

ligand binding site prediction server. The RaptorX Binding analysis determined a 

pocket multiplicity of 151, which is the highest value, and linked it to residues that 

are subject to G365, M366, Q367, G368, Y369, V395, H398, E399, H402, H408, 

A426, P427, L428 and V429 substitutions, with the expected Zn2+ cation ligand. 

The COACH server predicted a Zn2+ cation binding site with a C-score of 0.15 

located on residues H398, H402 and H408. Second-ranked sites identified by 

COACH were associated with Co2+ cation on residues E259, L334, 351, 355 and 

356. 
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Additionally, we studied the effects of each mutation and how they impact 

neighboring structures. In the Project HOPE, the effects of 50 selected non-

synonymous single nucleotide polymorphisms (nsSNPs) in ADAMTS3 on amino 

acid sizes, charges and hydrophobicity were analyzed. Among these nsSNPs, 26 led 

to a decrease in amino acid size, while 22 led to an increase. Charge was altered in 

23 regions, with 20 changing from positive to neutral, one changing from neutral to 

positive, and two changing from negative to neutral. Hydrophobicity decreased in 

seven mutations, while 22 others led to its increase. These results suggest that 

changes in amino acid properties at these positions may affect the protein structure 

and its interaction with other molecules, ultimately affecting the protein's function. 

Local 3D structures of the aforementioned 25 mutations included in AlphaFold 

protein models were also investigated. The results show that most mutations do not 

have a significant impact on the sequence structure in the vicinity of the amino acid 

substitution position in the 25 mutations. Only the Y536C substitution has a 

significant disruption in the secondary structure compared to other mutations (Figure 

56). The remaining 3D structure images altered after amino acid substitutions are 

presented in the article's appendix and are not included in this dissertation. 

 

Figure 56 - Alteration in the three-dimensional structure of ADAMTS3 due to the 

Y536C amino acid substitution. The mutation sites are colored in green. Results 

from Project HOPE 
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A calculation of the overall post-translational modifications, including 

methylation, phosphorylation, ubiquitination, and glycosylation, was also conducted 

for the wild-type ADAMTS3 structure and mutant. GPS-MSP predicted the absence 

of methylated sites in ADAMTS3. The predicted serine, threonine, and tyrosine 

phosphorylation sites by different kinases differ between NetPhos 3.1 and GPS 6.0, 

with GPS 6.0 predicting more phosphorylation sites than NetPhos 3.1 for both 

structures. Interestingly, some phosphorylation sites appear and disappear after 

mutation. GPS 6.0 shows the disappearance of sites on Ser58, Tyr536, Tyr636, and 

Thr668, and the appearance of new sites on Ile291, Ala370, Pro371, Gly374, 

Gly412, and Gly983, while NetPhos 3.1 shows the disappearance of sites on Tyr56, 

Ser58, and Ser957 and the appearance of new sites on Ile291, Pro371, Gly374, 

Gly412, and Gly983. Most of these changes are in mutation sites involving serine, 

threonine, and tyrosine. More changes in phosphorylation sites are observed in 

segment 1. For ubiquitination, UbPred detected 9 lysine residue ubiquitination sites 

in both the wild-type and mutant structures, while BDM-PUB detected 37 and 36 

ubiquitinated lysine residues in the wild-type and mutant proteins, respectively, and 

after mutation, there are several new and disappeared ubiquitination sites, most of 

which are in segment 3. Analysis using NetOGlyc4.0 predicted all possible O-

glycosylation sites in both proteins, and some mutants lost or gained glycosylation 

at certain positions, most of which are located in segment 3. These results were not 

further utilized but are published and provided in additional files accompanying the 

publication on this topic. 

5.6 - 3D modeling of protein structures of wild-type and mutant types of 

the FAT4 protein 

We created five models of the FAT4 protein using I-Tasser and evaluated their 

quality and the impact of mutations on the structure of the mutant protein. Due to 

the large size of FAT4, we only modeled those protein sequences where mutations 

were detected in our clinical case (already published) as well as the most deleterious 

mutations obtained from the above in-silico study. 
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Then, using the QMEAN score, Prosa Z-score, and Ramachandran plot 

analysis, each structure was evaluated for reliability. A more positive QMEAN score 

indicated the best protein model, while Prosa scanned the structure models and 

compared them to PDB crystal structures to determine their quality. Based on the 

QMEAN score, Prosa Z-score, and Ramachandran plot analysis, the selected models 

were optimized by energy minimization using UCSF Chimera (Figure 57). The 3D 

models of sequences 2-5 regions are presented in the supplemental materials of this 

article. 

 

Figure 57 - Overlay of 3D models of FAT4, sequence 1, containing substitutions 

A807V, V986D, D1022G, and N1309I. Yellow represents the wild-type FAT4, 

blue represents the mutant variant of FAT4 with red highlighting of the mutations 

The consequences of 11 investigated amino acid substitutions in FAT4 on 

amino acid size, charge, and hydrophobicity were analyzed in Project HOPE. Four 

mutant amino acids were larger than their wild-type counterparts, while six mutant 

amino acids were smaller. Charge was altered at eight different sites: 2 from positive 

to neutral, 1 from neutral to positive, 3 from neutral to negative, and 2 from negative 

to neutral. Analysis showed that hydrophobicity was decreased in five mutations and 

increased in four others. These results suggest that amino acid mutations affect 

protein function by altering protein structure and interaction with other components. 

The most deleterious nsSNPs, which were found to have a possible model template, 

were Y1912C (5DZY), D2439E (1L3W), E2426Q (1L3W), D2978G (5W1D), and 

Y2909H (1L3W). They provide a unique conformation to the central axis of the 

molecule. However, these results were not further used and were published as 

supplementary data to the article on this topic. 
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Before constructing the 3D model of FAT4, we predicted the secondary 

structure of FAT4 using the SOPMA program, which helped to refine the 

distribution of alpha helices, beta sheets, and random coils. Analysis of the 

secondary structure showed the presence of 49.31% random coils (1148), followed 

by 36.90% extended strands (859), 8.98% alpha helices (209), and 4.81% beta sheets 

(111). The distribution of amino acid substitutions in secondary structures was not 

further considered, but the data were published as supplementary material to the 

article on this topic. 

In analyzing the possible impact of amino acid substitutions on post-

translational modifications in the FAT4 protein, the GPSMSP 3.0 program did not 

provide information on methylation in this protein. NetPhos 3.1 predicted a 

phosphorylation site for 579 residues. The UbPred tool predicted that none of the 

lysine residues could be ubiquitinated. In contrast, BDMPUB predicted that 101 

lysine residues could be ubiquitinated, but none of them were included in the list of 

analyzed amino acid substitutions. Sites of glycosylation were also evaluated using 

SUMOylation. These results were not further used, but were published and provided 

in additional files to the publication on this topic. 

5.7 - Molecular Dynamics Modeling of Wild-Type and Mutant 

ADAMTS3 

The change in the root-mean-square deviation (RMSD) values of the Cα 

atoms of wild-type and mutant ADAMTS3 is presented in Figure 58. For segment 1 

of both the wild-type and mutant structures, equilibrium is reached after 130 ns, after 

which the RMSD values of the two structures do not differ significantly, indicating 

that mutations in segment 1 do not greatly affect the structure (wild-type: mean 

10.830 Å, SD 0.169 Å; mutant: mean 11.109 Å, SD 0.157 Å). However, for segment 

2, the wild-type protein reaches stability in just under 10 ns. After this, the system 

equilibrates, and the modeling converges throughout the entire runtime, but the 

RMSD values of the mutant protein fluctuate more compared to the wild-type 

structure throughout the modeling. The mutant structure has a higher RMSD, 
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indicating that mutations in segment 2 destabilize this part of the protein more (wild-

type: mean 5.31 Å, SD 0.344 Å; mutant: mean 14.312 Å, SD 0.584 Å). 

The regions of the proteins that fluctuate the most during modeling are shown 

as peaks on the RMSF graphs (Figure 59). β-sheets and α-helices are often more 

rigid and less variable than the unstructured component of the protein. In segment 1, 

although the peak on residues Asn119-Pro129 is higher for the wild-type structure, 

the RMSF of the wild-type and mutant structures are overall similar. This shows that 

mutations in segment 1 do not significantly stabilize or destabilize the structure. In 

segment 2, the overall RMSF of the mutant structure is higher than that of the wild-

type, indicating that mutations have destabilized the structure in this segment. There 

is a large difference in RMSF in residues Met478-Pro523, indicating that this region 

is the most destabilized. 

 

Figure 58 - Root mean square deviation (RMSD) of the Cα atoms of wild-type 

(red) and mutant (blue) ADAMTS3 protein segments 1 (A) and 2 (B) over time. 

For segment 1 (A), there is little difference in the equilibrium RMSD between the 

wild-type and mutant structures. For segment 2 (B), there is a significant difference 

between the RMSD values. All mean values and SD were calculated from values 

after 170 ns 
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Figure 59 - Root Mean Square Fluctuation (RMSF) for each segment of wild-type 

(red) and mutant (blue) ADAMTS3 protein. Panel A shows the RMSF for segment 

1, and the RMSF values for wild-type and mutant structures are similar 

 

In panel B, the overall RMSF for the mutant structure is higher than that of 

the wild-type structure for segment 2, indicating that mutations destabilized the 

structure in this segment. There is a large difference in RMSF for residues Met478-

Pro523, indicating that this region is the most destabilized. 

In addition, the average distributions of protein secondary structure elements 

are calculated during the simulation at 170 ns. For segment 1 (Figure 60), the 

percentage of average α-helix secondary structure decreased by 5.15% in the mutant 

structure compared to the wild type, but an increase of 3.86% in the percentage of 

310-helices was observed, which may stabilize the mutant structure and counteract 

the destabilizing effect of α-helix disruption by mutations, along with an increase of 
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1.50% in the percentage of turns. For segment 2 (Figure 61), a decrease of 5.48% in 

the percentage of β-sheets and an increase of 4.11% in the percentage of turns were 

observed, which may destabilize the overall structure of the mutant protein in this 

segment. Additionally, the percentage of α-helices also increased by 1.10%. 

 

Figure 60 - Distribution of secondary structures in segment 1 after 170 ns of 

molecular dynamics simulation 

Figure 62 shows the distribution of secondary structure elements in segment 

1 of both wild-type and mutant ADAMTS3. Examining the distribution of changes 

in secondary structure in different residues in segment 2 (Figure 63), we observe that 

β-sheets are disrupted in residues Lys491-Met492, Trp506-His509, and Asn512-

Thr518, which may be the cause of the increased RMSFs in residues Met478-Pro523 

in the mutant structure. 
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Figure 61 - Distribution of secondary structures in segment 2 after 170 ns of 

molecular dynamics simulation 

 

 

Figure 62 - Analysis of secondary structure in segment 1 after 170 ns of molecular 

dynamics simulation. Secondary structure elements of wild-type and mutant types 

of ADAMTS3. Mutated amino acids are marked in red 
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We also observe that there are no significant changes in the secondary 

structures near the positions of most of the investigated substitutions. There is no 

amino acid substitution in the residues of the aforementioned disrupted β-sheets. 

 

 

Figure 63 - Analysis of secondary structure in segment 1 after 170 ns of molecular 

dynamics simulation. Secondary structure elements of wild type and mutant 

ADAMTS3 are shown. Mutated amino acids are marked in red 

Also, the radius of gyration (Rg) analysis is conducted. Two of the most 

important indicators for determining the structural activity of a macromolecule are 

Rg determination and calculation of the distance to the center of mass of the 

molecule. The speed at which the protein folds is proportional to its compactness 

and can be measured using a complex computer method for calculating the radius of 
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gyration. From the analysis of the radius of gyration of wild-type and mutant 

ADAMTS3 structures, it can be observed that the mutant type showed overall higher 

Rg values throughout the simulation time scale compared to the wild type in 

segments 1 and 2, but the difference for segment 1 is not as significant (wild type: 

mean: 23.339 Å, SD: 0.082 Å; mutant: mean: 23.984 Å, SD: 0.139 Å) as for segment 

2 (wild type: mean: 27.648 Å, SD: 0.163 Å; mutant: mean: 33.564 Å, SD: 0.402 Å). 

As a result, the flexibility of the mutant protein is increased (Figure 64). 

 

 

Figure 64 - Radius of gyration of wild-type and mutant protein segments 1 and 2. 

All mean values and SDs were calculated from values after 170 ns 

The analysis of the solvent-accessible surface area (SASA) showed that the 

mutant structure has a higher SASA value than the wild type for segments 1 and 2 

(Figure 65). (Wild type segment 1: mean value: 21906.066 Å2, SD: 282.987 Å2; 

mutant: mean: 22675.036 Å2, SD: 453.033 Å2; wild type segment 2: mean: 

21565.973 Å2, SD: 245.14 Å2; mutant: mean: 22160.942 Å2, SD: 269.095 Å2). 



160 
 

Since a higher SASA value indicates protein expansion, it can be assumed that the 

wild type is more stable than the mutant protein. The more significant change in 

SASA value may be due to the amino acid substitution effect, which changes the 

protein surface size, its hydrophilicity, and other characteristics. 

 

 

Figure 65 - Solvent accessible surface area (SASA) (in Å2) of wild type and 

mutant type ADAMTS3 segments 1 (A) and 2 (B)  

For both segments, the SASA of the mutant structure is higher than that of 

the wild type. All mean values and SDs were calculated from values after 170 ns. 

During the molecular dynamics simulation, the difference in the number of 

hydrogen bonds (H-bonds) was also calculated (Figure 66). For segment 1, it is 

insignificant, which once again indicates that the destabilization effect for 

substitutions in this segment is small (wild-type: mean: 396.854, SD: 7.427; mutant: 

mean: 392.351, SD: 9.540). For segment 2, it can be noted that the wild-type 

structure forms a greater number of H-bonds, while the mutant structure 



161 
 

demonstrates a lower number of H-bonds, which may affect the stability of the 

mutant protein (wild-type: mean: 263.192, SD: 6.421; mutant: mean: 255.709, SD: 

9.473). 

 

 

Figure 66 - Total number of hydrogen bonds throughout the simulation of wild-

type and mutant ADAMTS3 protein segments 1 and 2. All mean values and SDs 

were calculated from values after 170 ns 

Principal component analysis (PCA) was used in this study to analyze the 

trajectories and structures of wild-type and mutant ADAMTS3 proteins in segments 

1 and 2. The PCA plots show the collective motions of the protein system projected 

onto the first two principal components. 

The plots for segments 1 and 2 (Figure 67) indicate a significant difference in 

the trajectories and motions of wild-type and mutant protein systems. In segment 1, 

the plots for wild-type and mutant structures largely overlap, indicating that 

mutations in this segment have a minor impact on the collective motions of the 
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protein. However, in segment 2, there is less overlap between the plots for wild-type 

and mutant structures, indicating that mutations in this segment have a greater 

impact on the collective motions of the protein. 

 

Figure 67 - PCA plots of trajectory analysis for segments 1 (A) and 2 (B) of wild-

type and mutant ADAMTS3 proteins. The trajectories of wild-type and mutant 

structures are represented by blue and red dots, respectively 

Free energy landscape (FEL) plots are constructed after PCA analysis using 

the first two principal components. In the FEL plots (Figure 68), the conformation 

with the lowest energy is depicted in dark blue. For segment 1, the lowest energy for 

the wild-type structure is 12.2 kJ/mol, while for the mutant structure, it is 10.9 

kJ/mol. For segment 2, the lowest energy for the wild-type structure is 7.80 kJ/mol, 

while for the mutant structure, it is 9.08 kJ/mol. For both segments, wild-type and 

mutant structures in ADAMTS3 demonstrate differences in the number and position 

of stable conformations that correspond to local minima in the FEL plots. This 

suggests that the mutations have influenced the overall conformational stability of 

the protein. 
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Figure 68 - Free energy landscape (FEL) analysis. The Gibbs energy is plotted as a 

function of the first two principal components (PC1 and PC2) for segments 1 and 2 

of wild-type and mutant ADAMTS3. The conformation with the lowest energy is 

denoted by dark blue color 

5.8 - Molecular dynamics simulation of wild-type and mutant FAT4 

protein 

The FAT4 protein consists of 4981 amino acid residues, making it a very long 

protein that needs to be divided into multiple fragments for modeling. In this study, 

we created five models: model 1 = sequence of 540 amino acid residues; model 2 = 
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600 residues; model 3 = 660 residues; model 4 = 600 residues; and model 5 = 420 

residues. Multiple simulations of these sequences were conducted. 

The changes in the root-mean-square deviation (RMSD) values of Cα atoms 

of wild-type and mutant FAT4 are presented in figures 69-73. Figure 69 shows that 

the wild-type protein reaches stability almost after 30 ns, and then the system 

converges and equilibrates after 60 ns. The RMSD values of the mutant protein 

deviate, and after 60 ns, the RMSD constantly increases until the end of the 

simulation. Therefore, the model 1 protein deviates more compared to the wild-type 

throughout the simulation. These results indicate that the wild-type protein is more 

stable than the mutant protein for model 1. 

 

 

Figure 69 - Root-mean-square deviation (RMSD) of FAT4 protein Cα atoms for 

wild-type (blue) and mutant model 1 (red) over time 
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Figure 70 - Root-mean-square deviation (RMSD) of the Cα atoms of wild-type 

(blue) and mutant model 2 (red) of the FAT4 protein over time

 

Figure 71 - Root Mean Square Deviation (RMSD) of the Cα atoms of wild-type 

(blue) and mutant model 3 (red) of FAT4 protein over time 
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Figure 72 - Root mean square deviation (RMSD) of the Cα atoms of wild-type 

(blue) and mutant model 4 (red) of FAT4 protein over time 

 

Figure 73 - Root-mean-square deviation (RMSD) of the Cα atoms of wild-type and 

mutant model 5 of FAT4 protein over time 

Similarly, for model-2, after 28 ns, there were fewer deviations in the wild-

type protein and the system remained equilibrated throughout the simulation. 

However, for the mutant variant, an increase in RMSD was observed almost at 30 

ns and a larger deviation was observed until 100 ns (Figure 70). 

RMSD for model-3 is shown in Figure 71. For the wild-type protein, there 

was a small deviation at almost 80 ns, after which the simulation converged, while 
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for the mutant type, RMSD continuously increased after 25 ns. This indicates greater 

stability of the wild-type protein compared to mutant model 3. 

Similarly, for model-4 and model-5, the wild-type FAT4 is more stable than 

the mutant models. The protein regions that fluctuate the most during simulation are 

shown as peaks in the RMSF graph (Figures 74-78). Protein tails (both N- and C-

termini) undergo changes more often than other regions of the protein. Alpha helices 

and beta sheets, for example, are usually more rigid and less fluctuating than the 

disordered parts of the protein. Residues with higher peaks, according to the 

trajectories, correspond to loop regions or N- and C-terminal zones. RMSF shows 

that there are more fluctuations in the mutant models compared to the wild-type 

FAT4 protein. 

 

 

Figure 74 - Root mean square fluctuation (RMSF) of FAT4 wild-type (blue) and 

mutant model 1 (red) α-carbons over time 
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Figure 75 - Root Mean Square Fluctuation (RMSF) of FAT4 protein's α-carbon 

atoms for the wild-type (blue) and mutant model 2 (red) over time 

 

Figure 76 - Root-mean-square fluctuation (RMSF) of FAT4 protein's Cα atoms for 

the wild-type (blue) and mutant model 3 (red) over time 
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Figure 77 - Root Mean Square Fluctuation (RMSF) of the FAT4 wild-type (blue) 

and mutant model 4 (red) α-carbon atoms over time 

 

Figure 78 - Root mean square fluctuation (RMSF) of the α-carbon atoms of wild-

type FAT4 protein (blue) and mutant model 5 (red) over time 

The average distributions of the secondary structure elements (SSE) of the 

protein were also calculated during the 170 ns simulation. Alpha helices (in orange) 

and beta sheets (in blue) were tracked as SSEs among other elements of the protein's 

secondary structure. For wild type protein in model-1, the simulation showed 0.83% 

helices and 35.49% beta strands, alongside 36.33% SSE, whereas the mutant protein 

showed 1.33% helices and 36.05% beta strands, alongside 37.38% SSE. For model-
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2, the wild type protein showed 0.37% helices and 35.25% beta strands, alongside 

35.62% SSE, whereas the mutant protein showed 1.63% helices and 34.43% beta 

strands, alongside 36.06% SSE. Similar analyses were performed for other models, 

and these data, along with graphical representations of the results, were published in 

the corresponding article. These results were not of principal importance for further 

analysis but were taken into account. 

The analysis of the radius of gyration (Rg) of the wild type protein and mutant 

models showed that the mutants exhibited a higher Rg value on the simulation time 

scale compared to the wild type. Consequently, the flexibility of the mutants 

increased (see Figure 79). Similar analyses were performed for other models, and 

these data, along with graphical representations of the results, were published in the 

corresponding article. 

 

 

Figure 79 - Analysis of radius of gyration over time during modeling of wild type 

(left) and mutant (right) variants of FAT4 models 1 (top) and 2 (bottom) 

Analysis of the energetic parameters for mutant and wild type models shows 

that the total energy of the mutant system was increased compared to the wild type, 
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but not equally for different models. The largest differences were observed for 

models 1, 2, and 3, while the smallest were observed for models 4 and 5. 

 

5.9 - Assessment of the impact of non-synonymous single nucleotide 

variants on the structure and function of the FAT4 protein identified in a 

patient with Hennekam syndrome phenotype  

We conducted an identification of the impact of missense mutations in the 

FAT4 gene, as well as missense mutations p.A807V, p.G3526D, and p.S3875N, 

which we obtained through VCF from the whole genome data of a patient suspected 

of having Hennekam syndrome (Table 20). Using multiple algorithms and tools, 

these substitutions were evaluated as deleterious. By including these amino acid 

substitutions in the models during molecular dynamics simulation of the FAT4 

protein, we tested the hypothesis that these mutations disrupt the structure and 

function of the protein. 

Table 20 - Overview of nsSNPs in the FAT4 gene obtained from the analysis 

of whole genome sequencing of a patient with Hennekam syndrome phenotype, 

including the mutation site, pathogenicity predictions, and information on 

population prevalence 

Gene 

 

nsSNP 

 

Genotype substitution 

in the 

protein 

Protein 

mutation 

Frequency in the 

population 

(1000g/gnomAD/E

xAC) 

Prediction of 

pathogenicity 

(FATHMM/PRO

VEAN/CADD) 

FAT4 rs1039808 Heterozygotic c.C2420T p.A807V, 0.424/0.461/0.422 D/N/17.22 

FAT4  rs1567047 Heterzygotic c.G10577A p.G3526

D 

0.231/0.225/0.267 D/D/29.7 

FAT4 rs12650153 Homozygotic c.G11624A p.S3875N 0.009/0.007/0.002 T/N/20.1 

 

Thus, in this chapter, we presented the results of nsSNP studies in the genes 

CCBE1, ADAMTS3, and FAT4, some of which have already been published by 

other researchers, while others were newly identified by us or found in the full-

genome sequence data of a patient with the phenotype of Hennekam syndrome. We 
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verified these mutations using various in silico tools to identify harmful nsSNPs 

among them, confirmed the impact of selected potentially harmful mutations on the 

structure and function of the investigated proteins, and then performed protein 

modeling, analysis, and simulation of the molecular dynamics of wild-type and 

mutant protein models to determine the effects that the identified amino acid 

substitutions may have on the CCBE1, ADAMTS3, and FAT4 proteins. 
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CONCLUSION 

 

With the advancement of technology and accumulation of new knowledge, 

there is a constant improvement in the understanding of significant developmental 

anomalies affecting the human population. However, much still remains unknown 

and awaits discovery. Predicting any deviation in a living system that may lead to 

disease/syndromes/death depends on multiple variables. Studying the genetic factors 

opens up significant opportunities for diagnosis, prognosis, and personalized 

treatment for physicians and biologists, but first, it is necessary to evaluate the 

impact of each individual genomic variant on the structure and function of the 

protein, as well as its influence on the phenotype as a whole. 

The results presented in this work were achieved through the development and 

integration of modern technologies for evaluating the impact of non-synonymous 

single nucleotide polymorphisms (nsSNPs) on the encoded protein into the analysis 

process. Along with other evaluation methods and the interpretation of large-scale 

and complex multidimensional data in systems biology, this may become another 

instrument for regular research on various human pathologies, including 

immunopathology. 

To understand the mechanisms of increased susceptibility of patients with 

RBCK1 deficiency to infections, as well as their relationship with amylopectinosis 

present in the disease phenotype, we conducted a bioinformatics study of a 

previously described case of RBCK1 deficiency accompanied by autoinflammation 

and an infectious syndrome, which distinguishes this disease from other 

autoinflammatory syndromes in this group. 

Genes with increased and decreased expression in autoinflammatory 

syndrome RBCK1 deficiency (also known as HOIL1 deficiency), identified during 

our research, allowed us to identify key signaling pathways involved in the 

development of this disease (signaling pathways involved in Staphylococcus aureus, 
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Vibrio cholerae infections, leishmaniasis, intracellular signal transduction, antigen 

processing and presentation, NK-mediated cytotoxicity, and others). 

These signaling pathways and corresponding proteins directly or indirectly 

reflect the deep involvement of molecular processes related to the immune system 

in the pathogenesis of the disease. In addition, a general understanding of the 

immune mechanisms involved has been developed. 

In particular, changes in the activity of mTOR, PI3K/AKT, Rho, and Nf-kB 

signaling pathways have been shown to affect the expression of immune system 

genes, cell apoptosis, and sensitivity to the key cytokine of the immune response, 

IL-1β. 

Moreover, the gene CSID2 significantly affects cell susceptibility to ER 

stress, apoptosis, and cell death. Its expression was significantly reduced in RBCK1-

deficient cells compared to mononuclear cells from the peripheral blood of healthy 

children (p=0.000000000000000007537936). 

We also found that the differences in the expression of genes related to viral 

infections, including the signaling pathway involved in SARS-CoV-2 infection, are 

insignificant. This is also confirmed by clinical observations described in 

publications by other researchers, where particular susceptibility in patients is 

identified specifically with respect to bacterial agents [129]. 

Overall, it can be concluded that increased susceptibility to pyogenic 

infections is complicated by general protein ubiquitination disorders, extensive 

glycophagy with glycogen depletion and accumulation of polysaccharides, as well 

as identified differences in gene expression and, most likely, production of various 

immune response proteins. 

In our study, the network density and the so-called biological distance for 

genes related to primary immunodeficiencies (PIDs) and congenital neutropenia, in 

particular, were found to be functionally similar to each other and closely interact 

compared to other PID genes. Using these data, as well as identifying genes whose 

expression differs significantly from normal in severe congenital neutropenia, and 

combining this information with data on protein-protein interaction and gene 
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function characterization data ("biological distance" and "network density"), we 

were able to predict causally significant genes for the development of congenital 

neutropenia that were not previously described in the classification of primary 

immunodeficiencies in this role. 

In our study, we identified 15 novel candidate genes for the development of 

congenital neutropenia that are interdependent with known genes involved in the 

same biological pathways, demonstrating the high biological significance of their 

correlation with known congenital neutropenia genes. The confirmation of several 

predicted genes and their impact on neutrophil functions in recent studies on patients 

with neutrophil defects convincingly demonstrate the significance of these candidate 

genes for the development of pathology. 

Additionally, in our investigation of congenital neutropenia, we analyzed the 

pathogenicity of single nucleotide variants in the ELANE and TCIRG1 genes. Using 

several computational tools, we identified 8 non-synonymous single nucleotide 

variants (rs28931611, rs57246956, rs137854448, rs193141883, rs201723157, 

rs201139487, rs137854451, and rs200384291) in the neutrophil elastase (ELANE) 

gene that are most disruptive to the protein structure and function. Variants with 

substitutions F218L, R34W, G203S, R193W, and T175M have not yet been detected 

in patients with severe congenital neutropenia, while variants C71Y, P139R, C151Y, 

G214R, and G203C, which we reported in our study, are already associated with 

both disorders. These mutations destabilize the structure, disrupt the activation, 

splicing, and folding of the ELANE protein and may decrease the efficiency of the 

trypsin-like serine protease. 

The TCIRG1 gene defect has recently been considered by various scientists 

not only as a cause of hereditary osteopetrosis (aggressive osteoporosis and 

increased risk of fractures), but also as a cause of congenital neutropenia. The results 

of whole-genome sequencing of a patient with congenital neutropenia at our disposal 

allowed us to suspect the TCIRG1 gene variant as the cause, especially since other 

hereditary causes of congenital neutropenia had not been previously identified by 



176 
 

specialists, and the patient receives specific treatment and is under observation by 

an immunologist with this diagnosis. 

To assess the pathogenicity of the identified non-synonymous single 

nucleotide variant, molecular dynamics simulation of the TCIRG1 protein was 

conducted with consideration of the given amino acid substitution (V52L). The tests 

showed that the resulting modified protein is less stable, indicating a higher 

probability of inadequate functioning in the patient. 

To provide convincing evidence, it is necessary to conduct testing of the 

identified protein in the patient and their parents, as well as exclude other potential 

causes that may be discovered in the future. Nonetheless, the in silico investigation 

method has allowed for the increased significance of such a substitution in the 

protein and presents it as a substitution requiring special attention. 

In addition to the TCIRG1 V52L mutation, we tested other single amino acid 

changes in highly conservative regions of the TCIRG1 protein, and a total of 15 

nsSNPs (rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, 

rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, 

rs121908251, rs149792489, and rs116675104) were identified, which are likely 

pathogenic gene variants since they destabilize the structure and function of the wild-

type protein. Some of these variants are located in the conserved domain of V-

ATPase I. These variants have not yet been identified in patients with congenital 

neutropenia and/or osteopetrosis, while the G405R, R444L, and D517N variants that 

were reported in our study have already been confirmed by other researchers as 

variants associated with osteopetrosis [26, 34]. The results of the investigation may 

help in further understanding the broad spectrum of diseases associated with the 

activation of the TCIRG1 kinase catalytic domain and assist in developing effective 

treatments for diseases associated with changes in this protein. 

Similar methods were applied in assessing the impact of non-synonymous 

single nucleotide substitutions on the structure and function of proteins responsible 

for the development of Hennekam syndrome - FAT4 and ADAMTS3. In addition to 

these two genes, this autosomal recessive disorder, in which lymphangiectasia and 



177 
 

lymphedema play a key role in its pathogenesis, is also associated with defects in 

the CCBE1 gene. Three corresponding proteins affect the activation of the primary 

lymphangiogenic growth factor VEGF-C. 

Using modern in silico tools, this study investigated the most pathogenic non-

synonymous single nucleotide polymorphisms (nsSNPs) in the CCBE1, FAT4, and 

ADAMTS3 genes. Our results demonstrate that seven nsSNPs in the CCBE1 gene 

(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418, 

rs121908251, and rs372499913) are likely to have a pathogenic impact, with four of 

them (G330E, C102S, C174R, and G107D) having a very high probability of being 

pathogenic, and two of them (G330E and G107D) never having been reported in the 

context of Hennekam syndrome. In addition, two important substitutions in the 

CCBE1 gene (rs374941368 and rs200149541) were evaluated, which may have an 

impact on post-translational modifications, as they affect a potential phosphorylation 

site. The web-based ligand-binding analysis service FTSite was used to assess the 

impact of these substitutions on molecule function, and the two substitutions were 

found to be potentially highly deleterious and should be taken into account when 

diagnosing Hennekam syndrome. 

When analyzing variants of the ADAMTS3 gene from the dbSNP database, 

919 nsSNPs were initially sorted, of which five substitutions (G298R, C567Y, 

A370T, C567R, and G374S) were predicted to be the most dangerous and potentially 

associated with disease. Protein modeling showed that the protein can be divided 

into segments 1, 2, and 3, which are connected by short loops. Using molecular 

dynamics simulation tools, it was found that some substitutions significantly 

destabilize the protein structure and disrupt secondary structures, especially in 

segment 2. The pathogenic effect of mutations in segment 1 may be related not to 

destabilization, but to other factors, such as changes in phosphorylation, as 

suggested by post-translational modification studies. 

Our work represents the first study of ADAMTS3 gene polymorphisms using 

multiple tools, including molecular dynamics simulation. Some of the predicted 

substitutions in the ADAMST3 protein are not yet reported in the PubMed library, 
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and we hope that the obtained data will be useful for diagnostic tasks and the search 

for therapy methods. 

In analyzing various variants of the FAT4 gene among 3,343 nsSNPs 

available in the NCBI library using different tools to predict pathogenicity, 11 

substitutions in the FAT4 protein (D2978G, V986D, Y1912C, R4799C, D1022G, 

G4786R, D2439E, E2426Q, R4643C, N1309I, and Y2909H) were predicted as 

potentially pathogenic. In addition, three substitutions in the FAT4 gene 

(rs12650153, rs1567047, and rs1039808) were previously detected in a patient with 

the presumed Henneman syndrome by filtering candidate variants during whole-

genome sequencing, and in silico study of these mutations showed that they strongly 

destabilize the protein structure and function. 

In this study, using the molecular dynamics simulation method (MDS), we 

focused on 19 mutations in the FAT4 gene - 11 predicted in our in silico study, 3 

nsSNPs detected in the patient, and 5 nsSNPs already published as likely causes of 

Henneman and Van Maldergem syndromes, which differ phenotypically from 

Henneman syndrome. 

The results of the applied molecular dynamics simulation method confirmed 

lower stability of the "mutant" protein compared to the "wild" type. Genetic variants 

detected in this cohort of studies were not previously registered as causes of 

Henneman syndrome. It is worth noting that due to the limited resources of the 

supercomputer and software, such a long protein as FAT4, consisting of 4981 amino 

acids, could only be simulated fragmentarily, in segments containing the analyzed 

substitution of less than 1000 amino acids. Nevertheless, we hope that these results 

can contribute to a better understanding of the predisposition to diseases associated 

with the activation of the FAT4 protein and may help in the development of effective 

approaches for the diagnosis and treatment of diseases related to this gene. 

In general, it should be noted that the FAT4 molecule has a huge size and is 

itself a flexible structure, providing the transmission of not fully understood 

intercellular signals. Perhaps this molecule provides spatial orientation, cell 

polarization, and signal transmission about intercellular contact, among other things. 
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Due to its length, it is difficult to predict how much of a serious impact a single 

amino acid substitution has. Accumulation of differences and especially impairment 

of functional active binding centers of molecules should be more significant than a 

single amino acid substitution. 

 

Prospects for further development of the topic 

Identification of specific genetic changes and determination of the molecular 

basis of immunopathology will enable the study of pathogenetic mechanisms, 

differentiation of nosological forms from a vast heterogeneous group of inborn 

errors of immunity, and approach the creation of specific targeted therapies, 

including gene editing and antisense oligonucleotides. This will make it possible to 

address issues of radical patient cure. In addition, even a simple acceleration of the 

diagnostic process will help timely diagnosis, prescribe replacement and 

pathogenetic therapy, improve the prognosis, and quality of life of patients. 

The process of verifying genes of primary immunodeficiency can be improved 

by developing software to predict candidate genes of various immunopathologies, 

and incorporating methods for predicting the impact of genetic changes on protein 

in silico provides the possibility of its effective use in clinical research. 

In addition, studying rare cases of human pathology allows us to address 

general pathological issues of disease formation, enriching science with knowledge 

of the functioning laws of the immune system and the human body as a whole. By 

delving into the molecular level of pathology, researchers gain objective 

justifications for the development and application of targeted therapeutic tactics, 

which opens up the prospect of creating new targeted drugs. 

Thus, our research has allowed us to draw the following conclusions. 
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FINDINGS 

 

1. New genetic findings have been identified in three types of primary 

immunodeficiency disorders: RBCK1 deficiency, congenital neutropenia, and 

Hennekam syndrome. 

2. Significant differences in gene expression have been found in RBCK1 

deficiency compared to healthy children and patients with CINCA/NOMID 

syndrome, Muckle-Wells syndrome, and mevalonate kinase deficiency. 

3. Non-synonymous single nucleotide substitutions in the TCIRG1 gene 

(rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, 

rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, 

rs121908251, rs149792489, rs116675104) and ELANE gene (rs200384291, 

rs201163886, rs193141883, rs201139487, rs201723157) destabilize the TCIRG1 

and ELANE proteins in neutrophils. 

4. The genes CDC42, CRKL, FGR, CRC, NYK, PLCG1, ARRB2, 

PIK3CG, PTK2, STAT1, STAT2, STAT3, STAT5B, VAV1, and ITK are new 

candidate genes for the development of congenital neutropenia. 

5. Non-synonymous single nucleotide substitutions in the CCBE1 

(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418, 

rs121908251, and rs372499913), FAT4 (rs147663284, rs192514171, rs138137489, 

rs199895179, rs372060616, rs138173652, rs142184187, rs147633644, 

rs181607904, rs184971791, rs148655455), and ADAMTS3 (rs61757480, 

rs61741624, rs140806973, rs140595148, rs140914273, rs142268705, rs142781084, 

rs143059623, rs146979323, rs372067284, rs370857003, rs375983592, 

rs367831484, rs202031187, and rs150012152) genes lead to destabilization of the 

CCBE1, FAT4, and ADAMTS3 proteins and may cause Hennekam syndrome. 

6. The developed program for sequential use of bioinformatics methods is 

effective in identifying genes that influence the pathogenesis of diseases associated 

with primary immunodeficiency disorders. 
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PRACTICAL RECOMMENDATIONS 

 

1. In diagnosing primary immunodeficiencies (inborn errors of 

immunity), it is necessary to determine the gene expression profile by analyzing 

differential gene expression, signaling pathways, and genetic ontologies, as well as 

identifying biomarkers of pathology, which will reduce the costs of treatment and 

prevent the development of side effects. 

2. When conducting research on predicting new candidate genes for 

congenital neutropenia, it is necessary to include co-expression factors, protein-

protein interactions, and signaling pathways in the analysis. 

3. For the differential diagnosis of congenital neutropenia, in addition to 

the genes listed on the ESID website and in the IUIS classification, additional genes 

(CDC42, CRKL, FGR, CRC, NYK, PLCG1, ARRB2, PIK3CG, PTK2, STAT1, 

STAT2, STAT3, STAT5B, VAV1, and ITK), identified in our study as candidate 

genes, should be included. 

4. For the differential diagnosis of Henneman syndrome and congenital 

neutropenia, in addition to the listed missense mutations in the genes ADAMTS3, 

FAT4, CCBE1, ELANE, and TCIRG1, it is necessary to assess the presence of 

nsSNP missense mutations identified in our study for the following genes: CCBE1 

(rs115982879, rs149792489, rs374941368, rs121908254, rs149531418, 

rs121908251, and rs372499913), ELANE (rs200384291, rs201163886, 

rs193141883, rs201139487, and rs201723157), TCIRG1 (rs199902030, 

rs200149541, rs372499913, rs267605221, rs374941368, rs375717418, rs80008675, 

rs149792489, rs116675104, rs121908250, rs121908251, rs121908251, 

rs149792489, and rs116675104), FAT4 (rs147663284, rs192514171, rs138137489, 

rs199895179, rs372060616, rs138173652, rs142184187, rs147633644, 

rs181607904, rs184971791, rs148655455), and ADAMTS3 (rs61757480, 

rs61741624, rs140806973, rs140595148, rs140914273, rs142268705, rs142781084, 

rs143059623, rs146979323, rs372067284, rs370857003, rs375983592, 

rs367831484, rs202031187, and rs150012152). 
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